Skip to main content

Targeted Protein Capture for Analysis of Electrophile-Protein Adducts

  • Protocol
  • First Online:
Cytochrome P450 Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 987))

Abstract

Proteomic analyses of protein-electrophile adducts generally employ affinity capture of the adduct moiety, which enables global analyses, but is poorly suited to targeted studies of specific proteins. We describe a targeted molecular probe approach to study modifications of the molecular chaperone heat-shock protein 90 (Hsp90), which regulates diverse client proteins. Noncovalent affinity capture with a biotinyl analog of the HSP90 inhibitor geldanamycin enables detection of the native protein isoforms Hsp90α and Hsp90β and their phosphorylated forms. We applied this probe to map and quantify adducts formed on Hsp90 by 4-hydroxynonenal (HNE) in RKO cells. This approach was also applied to measure the kinetics of site-specific adduction of selected Hsp90 residues. A protein-selective affinity capture approach is broadly applicable for targeted analysis of electrophile adducts and their biological effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liebler DC (2008) Protein damage by reactive electrophiles: targets and consequences. Chem Res Toxicol 21:117–128

    Article  PubMed  CAS  Google Scholar 

  2. Codreanu SG, Zhang B, Sobecki SM, Billheimer DD, Liebler DC (2009) Global analysis of protein damage by the lipid electrophile 4-hydroxy-2-nonenal. Mol Cell Proteomics 8:670–680

    Article  PubMed  CAS  Google Scholar 

  3. Kim HY, Tallman KA, Liebler DC, Porter NA (2009) An azido-biotin reagent for use in the isolation of protein adducts of lipid-derived electrophiles by streptavidin catch and photo-release. Mol Cell Proteomics 8:2080–2089

    Article  PubMed  CAS  Google Scholar 

  4. Vila A, Tallman KA, Jacobs AT, Liebler DC, Porter NA, Marnett LJ (2008) Identification of protein targets of 4-hydroxynonenal using click chemistry for ex vivo biotinylation of azido and alkynyl derivatives. Chem Res Toxicol 21:432–444

    Article  PubMed  CAS  Google Scholar 

  5. Liu J, Li Q, Yang X, van Breemen RB, Bolton JL, Thatcher GR (2005) Analysis of protein covalent modification by xenobiotics using a covert oxidatively activated tag: raloxifene proof-of-principle study. Chem Res Toxicol 18:1485–1496

    Article  PubMed  CAS  Google Scholar 

  6. Connor RE, Marnett LJ, Liebler DC (2011) Protein-selective capture to analyze electrophile adduction of hsp90 by 4-hydroxynonenal. Chem Res Toxicol 24:1275–1282

    Article  PubMed  CAS  Google Scholar 

  7. Carbone DL, Doorn JA, Kiebler Z, Ickes BR, Petersen DR (2005) Modification of heat shock protein 90 by 4-hydroxynonenal in a rat model of chronic alcoholic liver disease. J Pharmacol Exp Ther 315:8–15

    Article  PubMed  CAS  Google Scholar 

  8. Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM (1994) Inhibition of heat shock protein HSP90-pp 60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci U S A 91:8324–8328

    Article  PubMed  CAS  Google Scholar 

  9. Clevenger RC, Raibel JM, Peck AM, Blagg BS (2004) Biotinylated geldanamycin. J Org Chem 69:4375–4380

    Article  PubMed  CAS  Google Scholar 

  10. Ma ZQ, Dasari S, Chambers MC, Litton MD, Sobecki SM, Zimmerman LJ, Halvey PJ, Schilling B, Drake PM, Gibson BW, Tabb DL (2009) IDPicker 2.0: improved protein assembly with high discrimination peptide identification filtering. J Proteome Res 8:3872–3881

    Article  PubMed  CAS  Google Scholar 

  11. Tabb DL, Fernando CG, Chambers MC (2007) MyriMatch: highly accurate tandem mass spectral peptide identification by multivariate hypergeometric analysis. J Proteome Res 6:654–661

    Article  PubMed  CAS  Google Scholar 

  12. Zhang B, Chambers MC, Tabb DL (2007) Proteomic parsimony through bipartite graph analysis improves accuracy and transparency. J Proteome Res 6:3549–3557

    Article  PubMed  CAS  Google Scholar 

  13. Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4:207–214

    Article  PubMed  CAS  Google Scholar 

  14. Jaffe JD, Keshishian H, Chang B, Addona TA, Gillette MA, Carr SA (2008) Accurate inclusion mass screening: a bridge from unbiased discovery to targeted assay development for biomarker verification. Mol Cell Proteomics 7:1952–1962

    Article  PubMed  CAS  Google Scholar 

  15. Hansen BT, Davey SW, Ham AJ, Liebler DC (2005) P-Mod: an algorithm and software to map modifications to peptide sequences using tandem MS data. J Proteome Res 4:358–368

    Article  PubMed  CAS  Google Scholar 

  16. Rachakonda G, Xiong Y, Sekhar KR, Stamer SL, Liebler DC, Freeman ML (2008) Covalent modification at Cys151 dissociates the electrophile sensor Keap1 from the ubiquitin ligase CUL3. Chem Res Toxicol 21:705–710

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by National Institutes of Health Grants ES013125 and the National Foundation for Cancer Research.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Connor, R.E., Codreanu, S.G., Marnett, L.J., Liebler, D.C. (2013). Targeted Protein Capture for Analysis of Electrophile-Protein Adducts. In: Phillips, I., Shephard, E., Ortiz de Montellano, P. (eds) Cytochrome P450 Protocols. Methods in Molecular Biology, vol 987. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-321-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-321-3_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-320-6

  • Online ISBN: 978-1-62703-321-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics