Skip to main content

siRNA Design Principles and Off-Target Effects

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 986))

Abstract

Short interfering RNAs (siRNAs) are a major research tool that allows for knock-down of target genes via selective mRNA destruction in almost all eukaryotic organisms. siRNAs typically consist of a synthetic ∼21 nucleotide (nt) RNA-duplex where one strand is designed with perfect complementarity to the target mRNA. Although siRNAs were initially thought to be very target-specific because of their design, it turned out during the last years that all siRNAs have a more or less pronounced intrinsic off-target activity which can make the interpretation of data from siRNA experiments difficult. Here we describe essential rules for siRNA design that should be taken into account in order to obtain potent siRNAs with minimal off-target activity. In addition, we describe how to control for off-target activity in siRNA experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fire A, Xu S, Montgomery M et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  2. Tuschl T (2001) RNA interference and small interfering RNAs. ChemBioChem 2:239–245

    Article  PubMed  CAS  Google Scholar 

  3. Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349

    Article  PubMed  CAS  Google Scholar 

  4. Elbashir SM, Harborth J, Lendeckel W et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in mammalian cell culture. Nature 411:494–498

    Article  PubMed  CAS  Google Scholar 

  5. Dorsett Y, Tuschl T (2004) siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 3:318–329

    Article  PubMed  CAS  Google Scholar 

  6. Kim DH, Rossi JJ (2007) Strategies for silencing human disease using RNA interference. Nat Rev Genet 8:173–184

    Article  PubMed  CAS  Google Scholar 

  7. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139

    Article  PubMed  CAS  Google Scholar 

  8. Siomi H, Siomi MC (2009) On the road to reading the RNA-interference code. Nature 457:396–404

    Article  PubMed  CAS  Google Scholar 

  9. Filipowicz W, Jaskiewicz L, Kolb FA et al (2005) Post-transcriptional gene silencing by siRNAs and miRNAs. Curr Opin Struct Biol 15:331–341

    Article  PubMed  CAS  Google Scholar 

  10. Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9:22–32

    Article  PubMed  CAS  Google Scholar 

  11. Ender C, Meister G (2010) Argonaute proteins at a glance. J Cell Sci 123:1819–1823

    Article  PubMed  CAS  Google Scholar 

  12. Peters L, Meister G (2007) Argonaute proteins: mediators of RNA silencing. Mol Cell 26:611–623

    Article  PubMed  CAS  Google Scholar 

  13. Tolia NH, Joshua-Tor L (2007) Slicer and the argonautes. Nat Chem Biol 3:36–43

    Article  PubMed  CAS  Google Scholar 

  14. Jinek M, Doudna JA (2009) A three-dimensional view of the molecular machinery of RNA interference. Nature 457:405–412

    Article  PubMed  CAS  Google Scholar 

  15. Carmell MA, Xuan Z, Zhang MQ et al (2002) The argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev 16:2733–2742

    Article  PubMed  CAS  Google Scholar 

  16. Meister G, Landthaler M, Patkaniowska A et al (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197

    Article  PubMed  CAS  Google Scholar 

  17. Liu J, Carmell MA, Rivas FV et al (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441

    Article  PubMed  CAS  Google Scholar 

  18. Wu L, Fan J, Belasco JG (2008) Importance of translation and nonnucleolytic ago proteins for on-target RNA interference. Curr Biol 18:1327–1332

    Article  PubMed  CAS  Google Scholar 

  19. Doench JG, Petersen CP, Sharp PA (2003) siRNAs can function as miRNAs. Genes Dev 17:438–442

    Article  PubMed  CAS  Google Scholar 

  20. Jackson AL, Linsley PS (2010) Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 9:57–67

    Article  PubMed  CAS  Google Scholar 

  21. Semizarov D, Frost L, Sarthy A et al (2003) Specificity of short interfering RNA determined through gene expression signatures. Proc Natl Acad Sci USA 100:6347–6352

    Article  PubMed  CAS  Google Scholar 

  22. Persengiev SP, Zhu X, Green MR (2004) Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA 10:12–18

    Article  PubMed  CAS  Google Scholar 

  23. Jackson AL, Bartz SR, Schelter J et al (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21:635–637

    Article  PubMed  CAS  Google Scholar 

  24. Scacheri PC, Rozenblatt-Rosen O, Caplen NJ et al (2004) Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci USA 101:1892–1897

    Article  PubMed  CAS  Google Scholar 

  25. Birmingham A, Anderson EM, Reynolds A et al (2006) 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 3:199–204

    Article  PubMed  CAS  Google Scholar 

  26. Jackson AL, Burchard J, Schelter J et al (2006) Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 12:1179–1187

    Article  PubMed  CAS  Google Scholar 

  27. Lin X, Ruan X, Anderson MG et al (2005) siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res 33:4527–4535

    Article  PubMed  CAS  Google Scholar 

  28. Grimm D, Streetz KL, Jopling CL et al (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441:537–541

    Article  PubMed  CAS  Google Scholar 

  29. Khan AA, Betel D, Miller ML et al (2009) Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nat Biotechnol 27:549–555

    Article  PubMed  CAS  Google Scholar 

  30. Fedorov Y, Anderson EM, Birmingham A et al (2006) Off-target effects by siRNA can induce toxic phenotype. RNA 12:1188–1196

    Article  PubMed  CAS  Google Scholar 

  31. Hornung V, Guenthner-Biller M, Bourquin C et al (2005) Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 11:263–270

    Article  PubMed  CAS  Google Scholar 

  32. Judge AD, Sood V, Shaw JR et al (2005) Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 23:457–462

    Article  PubMed  CAS  Google Scholar 

  33. Chaudhary A, Srivastava S, Garg S (2011) Development of a software tool and criteria evaluation for efficient design of small interfering RNA. Biochem Biophys Res Commun 404:313–320

    Article  PubMed  CAS  Google Scholar 

  34. Wang X, Varma RK, Beauchamp L et al (2009) Selection of hyperfunctional siRNAs with improved potency and specificity. Nucleic Acids Res 37:e152

    Article  PubMed  Google Scholar 

  35. Tafer H, Ameres SL, Obernosterer G et al (2008) The impact of target site accessibility on the design of effective siRNAs. Nat Biotechnol 26:578–583

    Article  PubMed  CAS  Google Scholar 

  36. Ui-Tei K, Naito Y, Takahashi F et al (2004) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res 32:936–948

    Article  PubMed  CAS  Google Scholar 

  37. Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216

    Article  PubMed  CAS  Google Scholar 

  38. Schwarz DS, Hutvágner G, Du T, Xu Z et al (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208

    Article  PubMed  CAS  Google Scholar 

  39. Parker JS, Roe SM, Barford D (2005) Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. Nature 434:663–666

    Article  PubMed  CAS  Google Scholar 

  40. Ma JB, Yuan YR, Meister G et al (2005) Structural basis for 5’-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434:666–670

    Article  PubMed  CAS  Google Scholar 

  41. Frank F, Sonenberg N, Nagar B (2010) Structural basis for 5’-nucleotide base-specific recognition of guide RNA by human AGO2. Nature 465:818–822

    Article  PubMed  CAS  Google Scholar 

  42. Allerson CR, Sioufi N, Jarres R et al (2005) Fully 2’-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J Med Chem 48:901–904

    Article  PubMed  CAS  Google Scholar 

  43. Addepalli H, Meena, Peng CG et al (2010) Modulation of thermal stability can enhance the potency of siRNA. Nucleic Acids Res 38:7320–7331

    Google Scholar 

  44. Petri S, Dueck A, Lehmann G et al (2011) Increased siRNA duplex stability correlates with reduced off-target and elevated on-target effects. RNA 17:737–749

    Article  PubMed  CAS  Google Scholar 

  45. Bramsen JB, Pakula MM, Hansen TB et al (2010) A screen of chemical modifications identifies position-specific modification by UNA to most potently reduce siRNA off-target effects. Nucleic Acids Res 38:5761–5773

    Article  PubMed  CAS  Google Scholar 

  46. Bramsen JB, Laursen MB, Damgaard CK et al (2007) Improved silencing properties using small internally segmented interfering RNAs. Nucleic Acids Res 35:5886–5897

    Article  PubMed  CAS  Google Scholar 

  47. Chen PY, Weinmann L, Gaidatzis D et al (2008) Strand-specific 5’-O-methylation of siRNA duplexes controls guide strand selection and targeting specificity. RNA 14:263–274

    Article  PubMed  CAS  Google Scholar 

  48. Soutschek J, Akinc A, Bramlage B et al (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432:173–178

    Article  PubMed  CAS  Google Scholar 

  49. Bramsen JB, Kjems J (2011) Chemical modification of small interfering RNA. Methods Mol Biol 721:77–103

    Article  PubMed  CAS  Google Scholar 

  50. Caffrey DR, Zhao J, Song Z et al (2011) siRNA off-target effects can be reduced at concentrations that match their individual potency. PLoS One 6:e21503

    Google Scholar 

  51. Grunweller A, Wyszko E, Bieber B et al (2003) Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2’-O-methyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res 31:3185–3193

    Article  PubMed  Google Scholar 

  52. Vickers TA, Lima WF, Nichols JG et al (2007) Reduced levels of Ago2 expression result in increased siRNA competition in mammalian cells. Nucleic Acids Res 35:6598–6610

    Article  PubMed  CAS  Google Scholar 

  53. Diederichs S, Jung S, Rothenberg SM et al (2008) Coexpression of Argonaute-2 enhances RNA interference toward perfect match binding sites. Proc Natl Acad Sci USA 105:9284–9289

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our research is supported in part by the BMBF (NGFN+, FKZ PIM-01GS0804-5 to G.M.), the Bavarian Genome Research Network (BayGene to G.M.), the Deutsche Forschungsgemein­schaft (DFG), and Roche Kulmbach GmbH. S.P. received a fellowship from the Roche Postdoc Fellowship Program.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 SpringerScience+Business Media New York

About this protocol

Cite this protocol

Petri, S., Meister, G. (2013). siRNA Design Principles and Off-Target Effects. In: Moll, J., Colombo, R. (eds) Target Identification and Validation in Drug Discovery. Methods in Molecular Biology, vol 986. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-311-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-311-4_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-310-7

  • Online ISBN: 978-1-62703-311-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics