Skip to main content

In Vivo Target Validation by Inducible RNAi in Human Xenograft Mouse Models

  • Protocol
  • First Online:
Target Identification and Validation in Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 986))

Abstract

Proper target selection and validation are crucial to the discovery of new anti-cancer agents. Since tumors depend on a suitable microenvironment for their growth, once a putative target has been identified, its validation should be performed whenever possible in vivo. This chapter deals with the generation of human xenograft mouse models genetically modified to induce the modulation of cancer-related genes as an approach to validate oncology targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iorns E, Lord CJ, Turner N, Ashworth A (2007) Utilizing RNA interference to enhance cancer drug discovery. Nat Rev Drug Discov 6:556–568

    Article  PubMed  CAS  Google Scholar 

  2. Sandy P, Ventura A, Jacks T (2005) Mammalian RNAi: a practical guide. Biotechniques 39:215–224

    Article  PubMed  CAS  Google Scholar 

  3. Rankin EB, Fuh KC, Taylor TE et al (2010) AXL is an essential factor and therapeutic target for metastatic ovarian cancer. Cancer Res 70:7570–7579

    Article  PubMed  CAS  Google Scholar 

  4. Costa C, Hirsch E (2011) More than just kinases: the scaffolding function of PI3K. Curr Top Microbiol Immunol 346:171–181

    Article  Google Scholar 

  5. Morgan-Lappe SE, Tucker LA, Huang X et al (2007) Identification of Ras-related nuclear protein, targeting protein for xenopus kinesin-like protein 2, and stearoyl-CoA desaturase 1 as promising cancer targets from an RNAi-based screen. Cancer Res 67:4390–4398

    Article  PubMed  CAS  Google Scholar 

  6. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  7. Singh M, Johnson L (2006) Using genetically engineered mouse models of cancer to aid drug development: an industry perspective. Clin Cancer Res 12:5312–5328

    Article  PubMed  CAS  Google Scholar 

  8. Elez R, Piiper A, Kronenberger B et al (2003) Tumor regression by combination antisense therapy against Plk1 and Bcl-2. Oncogene 22:69–80

    Article  PubMed  CAS  Google Scholar 

  9. Futami K, Kumagai E, Makino H et al (2008) Anticancer activity of RecQL1 helicase siRNA in mouse xenograft models. Cancer Sci 99:1227–1236

    Article  PubMed  CAS  Google Scholar 

  10. Oh BY, Lee RA, Kim KH (2011) siRNA targeting Livin decreases tumor in a xenograft model for colon cancer. World J Gastroenterol 17:2563–2571

    Article  PubMed  CAS  Google Scholar 

  11. Verma UN, Surabhi RM, Schmaltieg A et al (2003) Small interfering RNAs directed against beta-catenin inhibit the in vitro and in vivo growth of colon cancer cells. Clin Cancer Res 9:1291–1300

    PubMed  CAS  Google Scholar 

  12. Oliveira S, Storm G, Schiffelers RM (2006) Targeted delivery of siRNA. J Biomed Biotechnol 2006:63675

    Article  PubMed  Google Scholar 

  13. Barres V, Ouellet V, Lafontaine J et al (2011) An essential role for Ran GTPase in epithelial ovarian cancer cell survival. Mol Cancer 9:272

    Article  Google Scholar 

  14. Ganzinelli M, Carrassa L, Crippa F et al (2008) Checkpoint kinase 1 down-regulation by an inducible small interfering RNA expression system sensitized in vivo tumors to treatment with 5-fluorouracil. Clin Cancer Res 14:5131–5141

    Article  PubMed  CAS  Google Scholar 

  15. Lee-Hoeflich ST, Crocker L, Yao E et al (2008) A central role for HER3 in HER2-amplified breast cancer: implications for targeted therapy. Cancer Res 68:5878–5887

    Article  PubMed  CAS  Google Scholar 

  16. Sala G, Dituri F, Raimondi C et al (2008) Phospholipase Cgamma1 is required for metastasis development and progression. Cancer Res 68:10187–10196

    Article  PubMed  CAS  Google Scholar 

  17. Feng M, Zhang J, Anver M et al (2011) In vivo imaging of human malignant mesothelioma grown orthotopically in the peritoneal cavity of nude mice. J Cancer 2:123–131

    Article  PubMed  CAS  Google Scholar 

  18. Wang M, Gartel AL (2011) The suppression of FOXM1 and its targets in breast cancer xenograft tumors by siRNA. Oncotarget 2:1218–1226

    PubMed  Google Scholar 

  19. Choy G, Choyke P, Libutti SK (2003) Current advances in molecular imaging: noninvasive in vivo bioluminescent and fluorescent optical imaging in cancer research. Mol Imaging 2:303–312

    Article  PubMed  CAS  Google Scholar 

  20. Luker GD, Luker KE (2008) Optical imaging: current applications and future directions. J Nucl Med 49:1–4

    Article  PubMed  Google Scholar 

  21. Richmond A, Su Y (2008) Mouse xenograft models vs GEM models for human cancer therapeutics. Dis Model Mech 1:78–82

    Article  PubMed  Google Scholar 

  22. Hillen W, Berens C (1994) Mechanisms underlying expression of Tn10 encoded tetracycline resistance. Annu Rev Microbiol 48:345–369

    Article  PubMed  CAS  Google Scholar 

  23. Hillen W, Gatz C, Altschmied L et al (1983) Control of expression of the Tn10-encoded tetracycline resistance genes. Equilibrium and kinetic investigation of the regulatory reaction. J Mol Biol 169:707–721

    Article  PubMed  CAS  Google Scholar 

  24. Yao F, Svensjo T, Winkler T et al (1998) Tetracycline repressor, tetR, rather than the tetR-mammalian cell transcription factor fusion derivatives, regulates inducible gene expression in mammalian cells. Hum Gene Ther 9:1939–1950

    Article  PubMed  CAS  Google Scholar 

  25. Marrazzo E, Marchini S, Previdi S et al (2006) Questioning the oncogenic role of DeltaNp73alpha in different cell lines expressing p53 or not. Cancer Biol Ther 5:794–803

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 SpringerScience+Business Media New York

About this protocol

Cite this protocol

Mazzoletti, M., Texidó, G. (2013). In Vivo Target Validation by Inducible RNAi in Human Xenograft Mouse Models. In: Moll, J., Colombo, R. (eds) Target Identification and Validation in Drug Discovery. Methods in Molecular Biology, vol 986. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-311-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-311-4_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-310-7

  • Online ISBN: 978-1-62703-311-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics