Skip to main content

Target Validation in Mice by Constitutive and Conditional RNAi

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 986))

Abstract

Gene silencing by RNA interference (RNAi) has become a standard method for the characterization of gene function in mammalian cells. Short hairpin (sh) RNAs expressed from stably integrated vectors mediate gene knockdown both in cultured cells and in mice, presenting a fast alternative to gene knockout approaches. We describe three strategies to control gene silencing in mice that can be applied to any transcript of interest. This shRNA based approach enables either i) constitutive body-wide knockdown, ii) cell type-specific knockdown controlled by Cre recombinase, or iii) inducible body-wide knockdown controlled by doxycycline. For reliable expression the shRNA vector of interest is inserted into a Rosa26 docking site of ES cells by a site-specific recombinase. These ES cells can then be used to generate shRNA transgenic mice. This technology enables the production of adult knockdown mice within 11 months for an expedite in vivo validation of drug targets.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Elbashir SM, Harborth J, Lendeckel W et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  PubMed  CAS  Google Scholar 

  2. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553

    Article  PubMed  CAS  Google Scholar 

  3. Paddison PJ, Caudy AA, Bernstein E et al (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16:948–958

    Article  PubMed  CAS  Google Scholar 

  4. Kuhn R, Streif S, Wurst W (2007) RNA interference in mice. Handb Exp Pharmacol 178:149–176

    Google Scholar 

  5. Dykxhoorn DM, Chowdhury D, Lieberman J (2008) RNA interference and cancer: endogenous pathways and therapeutic approaches. Adv Exp Med Biol 615:299–329

    Article  PubMed  CAS  Google Scholar 

  6. Dykxhoorn DM, Lieberman J (2006) Knocking down disease with siRNAs. Cell 126:231–235

    Article  PubMed  CAS  Google Scholar 

  7. Vaishnaw AK, Gollob J, Gamba-Vitalo C et al (2010) A status report on RNAi therapeutics. Silence 1:14

    Article  PubMed  Google Scholar 

  8. Falschlehner C, Steinbrink S, Erdmann G et al (2010) High-throughput RNAi screening to dissect cellular pathways: a how-to guide. Biotechnol J 5:368–376

    Article  PubMed  CAS  Google Scholar 

  9. Seyhan AA, Rya TE (2010) RNAi screening for the discovery of novel modulators of human disease. Curr Pharm Biotechnol 11:735–756

    Article  PubMed  CAS  Google Scholar 

  10. Seyhan AA, Varadarajan U, Choe S et al (2011) A genome-wide RNAi screen identifies novel targets of neratinib sensitivity leading to neratinib and paclitaxel combination drug treatments. Mol BioSyst 7:1974–1989

    Article  PubMed  CAS  Google Scholar 

  11. Tiedemann RE, Zhu YX, Schmidt J et al (2010) Kinome-wide RNAi studies in human multiple myeloma identify vulnerable kinase targets, including a lymphoid-restricted kinase, GRK6. Blood 115:1594–1604

    Article  PubMed  CAS  Google Scholar 

  12. Zhu YX, Tiedemann R, Shi CX et al (2011) RNAi screen of the druggable genome identifies modulators of proteasome inhibitor sensitivity in myeloma including CDK5. Blood 117:3847–3857

    Article  PubMed  CAS  Google Scholar 

  13. Delic S, Streif S, Deussing JM et al (2008) Genetic mouse models for behavioral analysis through transgenic RNAi technology. Genes Brain Behav 7:821–830

    Article  PubMed  CAS  Google Scholar 

  14. Kunath T, Gish G, Lickert H et al (2003) Transgenic RNA interference in ES cell-derived embryos recapitulates a genetic null phenotype. Nat Biotechnol 21:559–561

    Article  PubMed  CAS  Google Scholar 

  15. Hasuwa H, Kaseda K, Einarsdottir T et al (2002) Small interfering RNA and gene silencing in transgenic mice and rats. FEBS Lett 532:227–230

    Article  PubMed  CAS  Google Scholar 

  16. Hitz C, Wurst W, Kuhn R (2007) Conditional brain-specific knockdown of MAPK using Cre/loxP regulated RNA interference. Nucleic Acids Res 35:e90

    Article  PubMed  Google Scholar 

  17. Rubinson DA, Dillon CP, Kwiatkowski AV et al (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 33:401–406

    Article  PubMed  CAS  Google Scholar 

  18. Seibler J, Küter-Luks B, Kern H et al (2005) Single copy shRNA configuration for ubiquitous gene knockdown in mice. Nucleic Acids Res 33:e67

    Article  PubMed  Google Scholar 

  19. Steuber-Buchberger P, Wurst W, Kuhn R (2008) Simultaneous Cre-mediated conditional knockdown of two genes in mice. Genesis 46:144–151

    Article  PubMed  CAS  Google Scholar 

  20. Seibler J, Kleinridders A, Küter-Luks B et al (2007) Reversible gene knockdown in mice using a tight, inducible shRNA expression system. Nucleic Acids Res 35:e54

    Article  PubMed  Google Scholar 

  21. Nagy A, Mar L, Watts G (2009) Creation and use of a cre recombinase transgenic database. Methods Mol Biol 530:365–378

    Article  PubMed  CAS  Google Scholar 

  22. van de Wetering M, Oving I, Muncanet V et al (2003) Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep 4:609–615

    Article  PubMed  Google Scholar 

  23. Wiznerowicz M, Szulc J, Trono D (2006) Tuning silence: conditional systems for RNA interference. Nat Methods 3:682–688

    Article  PubMed  CAS  Google Scholar 

  24. Acehan D, Vaz F, Houtkooper RH et al (2011) Cardiac and skeletal muscle defects in a mouse model of human Barth syndrome. J Biol Chem 286:899–908

    Article  PubMed  CAS  Google Scholar 

  25. He G, Luo W, Li P et al (2010) Gamma-secretase activating protein is a therapeutic target for Alzheimer’s disease. Nature 467:95–98

    Article  PubMed  CAS  Google Scholar 

  26. Jordan SD, Krüger M, Willmes DM et al (2011) Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol 13:434–446

    Article  PubMed  CAS  Google Scholar 

  27. Koch L, Wunderlich FT, Seibler J et al (2008) Central insulin action regulates peripheral glucose and fat metabolism in mice. J Clin Invest 118:2132–2147

    PubMed  CAS  Google Scholar 

  28. Kotnik K, Popova E, Todiras M et al (2009) Inducible transgenic rat model for diabetes mellitus based on shRNA-mediated gene knockdown. PLoS One 4:e5124

    Article  PubMed  Google Scholar 

  29. Herold MJ, van den Brandt J, Seibler J et al (2008) Inducible and reversible gene silencing by stable integration of an shRNA-encoding lentivirus in transgenic rats. Proc Natl Acad Sci USA 105:18507–18512

    Article  PubMed  CAS  Google Scholar 

  30. Christoph T, Bahrenberg G, De Vry J et al (2008) Investigation of TRPV1 loss-of-function phenotypes in transgenic shRNA expressing and knockout mice. Mol Cell Neurosci 37:579–589

    Article  PubMed  CAS  Google Scholar 

  31. Sacca R, Engle SJ, Qin W et al (2010) Genetically engineered mouse models in drug discovery research. Methods Mol Biol 602:37–54

    Article  PubMed  CAS  Google Scholar 

  32. Yang R, Castriota G, Chen Z et al (2011) RNAi-mediated germline knockdown of FABP4 increases body weight but does not improve the deranged nutrient metabolism of diet-induced obese mice. Int J Obes 35:217–225

    Article  CAS  Google Scholar 

  33. Reid SW, Tessarollo L (2009) Isolation, microinjection and transfer of mouse blastocysts. Methods Mol Biol 530:269–285

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 SpringerScience+Business Media New York

About this protocol

Cite this protocol

Kleinhammer, A., Wurst, W., Kühn, R. (2013). Target Validation in Mice by Constitutive and Conditional RNAi. In: Moll, J., Colombo, R. (eds) Target Identification and Validation in Drug Discovery. Methods in Molecular Biology, vol 986. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-311-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-311-4_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-310-7

  • Online ISBN: 978-1-62703-311-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics