Skip to main content

Two-Dimensional vs. Three-Dimensional In Vitro Tumor Migration and Invasion Assays

  • Protocol
  • First Online:
Book cover Target Identification and Validation in Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 986))

Abstract

Motility and invasion are key hallmarks that distinguish benign from malignant tumors, enabling cells to cross tissue boundaries, disseminate in blood and lymph and establish metastases at distant sites. Similar properties are also utilized by activated endothelial cells during tumor-induced angiogenesis. It is now appreciated that these processes might provide a rich source of novel molecular targets with the potential for inhibitors to restrain both metastasis and neoangiogenesis. Such therapeutic strategies require assays that can rapidly and quantitatively measure cell movement and the ability to traverse physiological barriers. The need for high-throughput, however, must be balanced by assay designs that accommodate, as far as possible, the complexity of the in vivo tumor microenvironment. This chapter aims to give an overview of some commonly used migration and invasion assays to aid in the selection of a balanced portfolio of techniques for the rapid and accurate evaluation of novel therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

Two-dimensional

3-D:

Three-dimensional

BBB:

Blood–brain barrier

BME:

Basement membrane extract

CAM:

Chorioallantoic membrane

CAM-DR:

Cell adhesion-mediated drug resistance

EC:

Endothelial cell

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

EHS:

Engelbreth–Holm–Swarm

EMT:

Epithelial-to-mesenchymal transition

FAK:

Focal adhesion kinase

FCS:

Fetal calf serum

GBM:

Glioblastoma

GFP:

Green fluorescent protein

HCC:

Hepatocellular carcinoma

HGF:

Hepatocyte growth factor

HIF-1:

Hypoxia-inducible factor-1

HT(S):

High-throughput (screening)

HUVEC:

Human umbilical vein endothelial cell

MMP:

Matrix metalloproteinase

MMPi:

Matrix metalloproteinase inhibitors

PD:

Pharmacodynamic

PET:

Polyethylene terephthalate

RFP:

Red fluorescent protein

s.c.:

Subcutaneously

SCC:

Squamous cell carcinoma

TIMP:

Tissue inhibitor of metalloproteinases

VEGF:

Vascular endothelial growth factor

References

  1. Francia G, Cruz-Munoz W, Man S et al (2011) Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nat Rev Cancer 11:135–141

    Article  PubMed  CAS  Google Scholar 

  2. Eccles SA, Welch DR (2007) Metastasis: recent discoveries and novel treatment strategies. Lancet 369:1742–1757

    Article  PubMed  CAS  Google Scholar 

  3. Coleman R (2011) The use of bisphosphonates in cancer treatment. Ann N Y Acad Sci 1218:3–14

    Article  PubMed  CAS  Google Scholar 

  4. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  5. Palmer TD, Ashby WJ, Lewis JD et al (2011) Targeting tumor cell motility to prevent metastasis. Adv Drug Deliv Rev 63:568–581

    Article  PubMed  CAS  Google Scholar 

  6. Eccles SA (2004) Parallels in invasion and angiogenesis provide pivotal points for therapeutic intervention. Int J Dev Biol 48:583–598

    Article  PubMed  CAS  Google Scholar 

  7. Eccles SA, Court W, Patterson L et al (2009) In vitro assays for endothelial cell functions related to angiogenesis: proliferation, motility, tubular differentiation, and proteolysis. Methods Mol Biol 467:159–181

    Article  PubMed  CAS  Google Scholar 

  8. Brader S, Eccles SA (2004) Phosphoinositide 3-kinase signalling pathways in tumor progression, invasion and angiogenesis. Tumori 90:2–8

    PubMed  CAS  Google Scholar 

  9. Eccles SA, Massey A, Raynaud FI et al (2008) NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis. Cancer Res 68:2850–2860

    Article  PubMed  CAS  Google Scholar 

  10. Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10:445–457

    Article  PubMed  CAS  Google Scholar 

  11. Sahai E, Marshall CJ (2003) Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol 5:711–719

    Article  PubMed  CAS  Google Scholar 

  12. Strongin AY (2010) Proteolytic and non-proteolytic roles of membrane type-1 matrix metalloproteinase in malignancy. Biochim Biophys Acta 1803:133–141

    Article  PubMed  CAS  Google Scholar 

  13. Ebos JM, Kerbel RS (2011) Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat Rev Clin Oncol 8:210–221

    Article  PubMed  CAS  Google Scholar 

  14. Collins CS, Hong J, Sapinoso L et al (2006) A small interfering RNA screen for modulators of tumor cell motility identifies MAP4K4 as a promigratory kinase. Proc Natl Acad Sci USA 103:3775–3780

    Article  PubMed  CAS  Google Scholar 

  15. Roussos ET, Condeelis JS, Patsialou A (2011) Chemotaxis in cancer. Nat Rev Cancer 11:573–587

    Article  PubMed  CAS  Google Scholar 

  16. Sawyer C, Sturge J, Bennett DC et al (2003) Regulation of breast cancer cell chemotaxis by the phosphoinositide 3-kinase p110delta. Cancer Res 63:1667–1675

    PubMed  CAS  Google Scholar 

  17. Breckenridge MT, Egelhoff TT, Baskaran H (2010) A microfluidic imaging chamber for the direct observation of chemotactic transmigration. Biomed Microdevices 12:543–553

    Article  PubMed  Google Scholar 

  18. Albini A, Noonan DM (2010) The ‘chemoinvasion’ assay, 25 years and still going strong: the use of reconstituted basement membranes to study cell invasion and angiogenesis. Curr Opin Cell Biol 22:677–689

    Article  PubMed  CAS  Google Scholar 

  19. Eccles SA, Box C, Court W (2005) Cell migration/invasion assays and their application in cancer drug discovery. Biotechnol Annu Rev 11:391–421

    Article  PubMed  CAS  Google Scholar 

  20. Maliakal JC (2002) Quantitative high throughput endothelial cell migration and invasion assay system. Methods Enzymol 352:175–182

    Article  PubMed  CAS  Google Scholar 

  21. Marshall J (2011) Transwell((R)) invasion assays. Methods Mol Biol 769:97–110

    Article  PubMed  CAS  Google Scholar 

  22. van Roosmalen W, Le Devedec SE, Zovko S et al (2011) Functional screening with a live cell imaging-based random cell migration assay. Methods Mol Biol 769:435–448

    Article  PubMed  CAS  Google Scholar 

  23. Ng MR, Brugge JS (2009) A stiff blow from the stroma: collagen crosslinking drives tumor progression. Cancer Cell 16:455–457

    Article  PubMed  CAS  Google Scholar 

  24. Kusama T, Mukai M, Tatsuta M et al (2006) Inhibition of transendothelial migration and invasion of human breast cancer cells by preventing geranylgeranylation of Rho. Int J Oncol 29:217–223

    PubMed  CAS  Google Scholar 

  25. Burleson KM, Hansen LK, Skubitz AP (2004) Ovarian carcinoma spheroids disaggregate on type I collagen and invade live human mesothelial cell monolayers. Clin Exp Metastasis 21:685–697

    Article  PubMed  CAS  Google Scholar 

  26. Jung S, Kim HW, Lee JH et al (2002) Brain tumor invasion model system using organotypic brain-slice culture as an alternative to in vivo model. J Cancer Res Clin Oncol 128:469–476

    Article  PubMed  Google Scholar 

  27. Quintavalle M, Elia L, Price JH et al (2011) A cell-based high-content screening assay reveals activators and inhibitors of cancer cell invasion. Sci Signal 4:ra49

    Article  PubMed  CAS  Google Scholar 

  28. Nystrom ML, Thomas GJ, Stone M et al (2005) Development of a quantitative method to analyse tumour cell invasion in organotypic culture. J Pathol 205:468–475

    Article  PubMed  CAS  Google Scholar 

  29. Brekhman V, Neufeld G (2009) A novel asymmetric 3D in-vitro assay for the study of tumor cell invasion. BMC Cancer 9:415

    Article  PubMed  CAS  Google Scholar 

  30. Harma V, Virtanen J, Makela R et al (2010) A comprehensive panel of three-dimensional models for studies of prostate cancer growth, invasion and drug responses. PLoS One 5:e10431

    Article  PubMed  CAS  Google Scholar 

  31. Duong HS, Le AD, Zhang Q et al (2005) A novel 3-dimensional culture system as an in vitro model for studying oral cancer cell invasion. Int J Exp Pathol 86:365–374

    Article  PubMed  CAS  Google Scholar 

  32. David L, Dulong V, Le Cerf D et al (2004) Reticulated hyaluronan hydrogels: a model for examining cancer cell invasion in 3D. Matrix Biol 23:183–193

    Article  PubMed  CAS  Google Scholar 

  33. Truong HH, de Sonneville J, Ghotra VP et al (2012) Automated microinjection of cell-polymer suspensions in 3D ECM scaffolds for high-throughput quantitative cancer invasion screens. Biomaterials 33:181–188

    Article  PubMed  CAS  Google Scholar 

  34. Echeverria V, Meyvantsson I, Skoien A et al (2010) An automated high-content assay for tumor cell migration through 3-dimensional matrices. J Biomol Screen 15:1144–1151

    Article  PubMed  CAS  Google Scholar 

  35. Mareel MM, Van Roy FM, Messiaen LM et al (1987) Qualitative and quantitative analysis of tumour invasion in vivo and in vitro. J Cell Sci Suppl 8:141–163

    PubMed  CAS  Google Scholar 

  36. Bracke ME, Boterberg T, Mareel MM (2001) Chick heart invasion assay. Methods Mol Med 58:91–102

    PubMed  CAS  Google Scholar 

  37. Woodward JK, Nichols CE, Rennie IG et al (2002) An in vitro assay to assess uveal melanoma invasion across endothelial and basement membrane barriers. Invest Ophthalmol Vis Sci 43:1708–1714

    PubMed  Google Scholar 

  38. Kataoka T, Umeda M, Shigeta T et al (2010) A new in vitro model of cancer invasion using AlloDerm, a human cadaveric dermal equivalent: a preliminary report. Kobe J Med Sci 55:E106–E115

    PubMed  Google Scholar 

  39. Andjelkovic AV, Zochowski MR, Morgan F et al (2001) Qualitative and quantitative analysis of monocyte transendothelial migration by confocal microscopy and three-dimensional image reconstruction. In Vitro Cell Dev Biol Anim 37:111–120

    Article  PubMed  CAS  Google Scholar 

  40. Pilkington GJ, Bjerkvig R, De Ridder L et al (1997) In vitro and in vivo models for the study of brain tumour invasion. Anticancer Res 17:4107–4109

    PubMed  CAS  Google Scholar 

  41. Yates C, Shepard CR, Papworth G et al (2007) Novel three-dimensional organotypic liver bioreactor to directly visualize early events in metastatic progression. Adv Cancer Res 97:225–246

    Article  PubMed  Google Scholar 

  42. Hsiao AY, Torisawa YS, Tung YC et al (2009) Microfluidic system for formation of PC-3 prostate cancer co-culture spheroids. Biomaterials 30:3020–3027

    Article  PubMed  CAS  Google Scholar 

  43. Unger RE, Halstenberg S, Sartoris A et al (2011) Human endothelial and osteoblast co-cultures on 3D biomaterials. Methods Mol Biol 695:229–241

    Article  PubMed  CAS  Google Scholar 

  44. Sieh S, Lubik AA, Clements JA et al (2010) Interactions between human osteoblasts and prostate cancer cells in a novel 3D in vitro model. Organogenesis 6:181–188

    Article  PubMed  Google Scholar 

  45. Mastro AM, Vogler EA (2009) A three-dimensional osteogenic tissue model for the study of metastatic tumor cell interactions with bone. Cancer Res 69:4097–4100

    Article  PubMed  CAS  Google Scholar 

  46. Niggemann B, Drell TL IV, Joseph J et al (2004) Tumor cell locomotion: differential dynamics of spontaneous and induced migration in a 3D collagen matrix. Exp Cell Res 298:178–187

    Article  PubMed  CAS  Google Scholar 

  47. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252

    Article  PubMed  CAS  Google Scholar 

  48. Nyga A, Cheema U, Loizidou M (2011) 3D tumour models: novel in vitro approaches to cancer studies. J Cell Commun Signal 5:239–248

    Article  PubMed  Google Scholar 

  49. Shirinifard A, Gens JS, Zaitlen BL et al (2009) 3D multi-cell simulation of tumor growth and angiogenesis. PLoS One 4:e7190

    Article  PubMed  CAS  Google Scholar 

  50. Smalley KS, Lioni M, Herlyn M (2006) Life isn’t flat: taking cancer biology to the next dimension. In Vitro Cell Dev Biol Anim 42:242–247

    Article  PubMed  CAS  Google Scholar 

  51. Green SK, Francia G, Isidoro C et al (2004) Antiadhesive antibodies targeting E-cadherin sensitize multicellular tumor spheroids to chemotherapy in vitro. Mol Cancer Ther 3:149–159

    PubMed  CAS  Google Scholar 

  52. Birgersdotter A, Sandberg R, Ernberg I (2005) Gene expression perturbation in vitro—a growing case for three-dimensional (3D) culture systems. Semin Cancer Biol 15:405–412

    Article  PubMed  Google Scholar 

  53. Cukierman E, Pankov R, Stevens DR et al (2001) Taking cell-matrix adhesions to the third dimension. Science 294:1708–1712

    Article  PubMed  CAS  Google Scholar 

  54. Kunz-Schughart LA, Freyer JP, Hofstaedter F et al (2004) The use of 3-D cultures for high-throughput screening: the multicellular spheroid model. J Biomol Screen 9:273–285

    Article  PubMed  CAS  Google Scholar 

  55. Takagi A, Watanabe M, Ishii Y et al (2007) Three-dimensional cellular spheroid formation provides human prostate tumor cells with tissue-like features. Anticancer Res 27:45–53

    PubMed  CAS  Google Scholar 

  56. Hirschhaeuser F, Menne H, Dittfeld C et al (2010) Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol 148:3–15

    Article  PubMed  CAS  Google Scholar 

  57. Scott RW, Hooper S, Crighton D et al (2010) LIM kinases are required for invasive path generation by tumor and tumor-associated stromal cells. J Cell Biol 191:169–185

    Article  PubMed  CAS  Google Scholar 

  58. Hardelauf H, Frimat JP, Stewart JD et al (2011) Microarrays for the scalable production of metabolically relevant tumour spheroids: a tool for modulating chemosensitivity traits. Lab Chip 11:419–428

    Article  PubMed  CAS  Google Scholar 

  59. Friedrich J, Seidel C, Ebner R et al (2009) Spheroid-based drug screen: considerations and practical approach. Nat Protoc 4:309–324

    Article  PubMed  CAS  Google Scholar 

  60. Tung YC, Hsiao AY, Allen SG et al (2011) High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136:473–478

    Article  PubMed  CAS  Google Scholar 

  61. Vinci M, Gowan S, Boxall F et al (2012) Advances in establishment and analysis of 3D tumour spheroid-based functional assays for target validation and drug evaluation. BMC Biol 10:29. doi:10.1186/1741-7007-10-29

    Article  PubMed  CAS  Google Scholar 

  62. Lai Y, Asthana A, Kisaalita WS (2011) Biomarkers for simplifying HTS 3D cell culture platforms for drug discovery: the case for cytokines. Drug Discov Today 16:293–297

    Article  PubMed  CAS  Google Scholar 

  63. Ghosh S, Spagnoli GC, Martin I et al (2005) Three-dimensional culture of melanoma cells profoundly affects gene expression profile: a high density oligonucleotide array study. J Cell Physiol 204:522–531

    Article  PubMed  CAS  Google Scholar 

  64. Fischbach C, Kong HJ, Hsiong SX et al (2009) Cancer cell angiogenic capability is regulated by 3D culture and integrin engagement. Proc Natl Acad Sci U S A 106:399–404

    Article  PubMed  CAS  Google Scholar 

  65. Vaira V, Fedele G, Pyne S et al (2010) Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors. Proc Natl Acad Sci USA 107:8352–8356

    Article  PubMed  CAS  Google Scholar 

  66. Keith B, Simon MC (2007) Hypoxia-inducible factors, stem cells, and cancer. Cell 129:465–472

    Article  PubMed  CAS  Google Scholar 

  67. Rodriguez-Jimenez FJ, Moreno-Manzano V, Lucas-Dominguez R et al (2008) Hypoxia causes downregulation of mismatch repair system and genomic instability in stem cells. Stem Cells 26:2052–2062

    Article  PubMed  CAS  Google Scholar 

  68. Lin Q, Yun Z (2010) Impact of the hypoxic tumor microenvironment on the regulation of cancer stem cell characteristics. Cancer Biol Ther 9:949–956

    Article  PubMed  CAS  Google Scholar 

  69. Benita Y, Kikuchi H, Smith AD et al (2009) An integrative genomics approach identifies hypoxia inducible factor-1 (HIF-1)-target genes that form the core response to hypoxia. Nucleic Acids Res 37:4587–4602

    Article  PubMed  CAS  Google Scholar 

  70. Lu X, Kang Y (2010) Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clin Cancer Res 16:5928–5935

    Article  PubMed  CAS  Google Scholar 

  71. DeClerck K, Elble RC (2010) The role of hypoxia and acidosis in promoting metastasis and resistance to chemotherapy. Front Biosci 15:213–225

    Article  PubMed  CAS  Google Scholar 

  72. Rohwer N, Cramer T (2011) Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist Updat 14:191–201

    Article  PubMed  CAS  Google Scholar 

  73. Li Z, Rich JN (2010) Hypoxia and hypoxia inducible factors in cancer stem cell maintenance. Curr Top Microbiol Immunol 345:21–30

    Article  PubMed  CAS  Google Scholar 

  74. Yu H, Zhang CM, Wu YS (2010) Research progress in cancer stem cells and their drug resistance. Chin J Cancer 29:261–264

    Article  PubMed  Google Scholar 

  75. Ricci-Vitiani L, Lombardi DG, Pilozzi E et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115

    Article  PubMed  CAS  Google Scholar 

  76. Bartholoma P, Impidjati, Reininger-Mack A et al (2005) A more aggressive breast cancer spheroid model coupled to an electronic capillary sensor system for a high-content screening of cytotoxic agents in cancer therapy: 3-dimensional in vitro tumor spheroids as a screening model. J Biomol Screen 10:705–714

    Article  PubMed  CAS  Google Scholar 

  77. Zhang X, Wang W, Yu W et al (2005) Development of an in vitro multicellular tumor spheroid model using microencapsulation and its application in anticancer drug screening and testing. Biotechnol Prog 21:1289–1296

    Article  PubMed  CAS  Google Scholar 

  78. Weiswald LB, Richon S, Validire P et al (2009) Newly characterised ex vivo colospheres as a three-dimensional colon cancer cell model of tumour aggressiveness. Br J Cancer 101:473–482

    Article  PubMed  CAS  Google Scholar 

  79. Koo BK, Stange DE, Sato T et al (2012) Controlled gene expression in primary Lgr5 organoid cultures. Nat Methods 9:81–83

    Article  CAS  Google Scholar 

  80. Kim JB (2005) Three-dimensional tissue culture models in cancer biology. Semin Cancer Biol 15:365–377

    Article  PubMed  Google Scholar 

  81. Pampaloni F, Reynaud EG, Stelzer EH (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8:839–845

    Article  PubMed  CAS  Google Scholar 

  82. Mazzoleni G, Di Lorenzo D, Steimberg N (2009) Modelling tissues in 3D: the next future of pharmaco-toxicology and food research? Genes Nutr 4:13–22

    Article  PubMed  CAS  Google Scholar 

  83. Haycock JW (2011) 3D cell culture: a review of current approaches and techniques. Methods Mol Biol 695:1–15

    Article  PubMed  CAS  Google Scholar 

  84. Prestwich GD, Liu Y, Yu B et al (2007) 3-D culture in synthetic extracellular matrices: new tissue models for drug toxicology and cancer drug discovery. Adv Enzyme Regul 47:196–207

    Article  PubMed  CAS  Google Scholar 

  85. Yamada KM, Cukierman E (2007) Modeling tissue morphogenesis and cancer in 3D. Cell 130:601–610

    Article  PubMed  CAS  Google Scholar 

  86. Wartenberg M, Donmez F, Ling FC et al (2001) Tumor-induced angiogenesis studied in confrontation cultures of multicellular tumor spheroids and embryoid bodies grown from pluripotent embryonic stem cells. FASEB J 15:995–1005

    Article  PubMed  CAS  Google Scholar 

  87. Unsworth BR, Lelkes PI (1998) Growing tissues in microgravity. Nat Med 4:901–907

    Article  PubMed  CAS  Google Scholar 

  88. Del Duca D, Werbowetski T, Del Maestro RF (2004) Spheroid preparation from hanging drops: characterization of a model of brain tumor invasion. J Neurooncol 67:295–303

    Article  PubMed  Google Scholar 

  89. Eicher C, Dewerth A, Kirchner B et al (2011) Development of a drug resistance model for hepatoblastoma. Int J Oncol 38:447–454

    PubMed  CAS  Google Scholar 

  90. Zhang Q, Nguyen AL, Shi S et al (2011) Three-dimensional spheroid culture of human gingiva-derived mesenchymal stem cells enhances mitigation of chemotherapy-induced oral mucositis. Stem Cells Dev 21(6):937–947

    Article  PubMed  CAS  Google Scholar 

  91. Ivascu A, Kubbies M (2006) Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis. J Biomol Screen 11:922–932

    Article  PubMed  CAS  Google Scholar 

  92. Lee GY, Kenny PA, Lee EH et al (2007) Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 4:359–365

    Article  PubMed  CAS  Google Scholar 

  93. McMillin DW, Delmore J, Weisberg E et al (2010) Tumor cell-specific bioluminescence platform to identify stroma-induced changes to anticancer drug activity. Nat Med 16:483–489

    Article  PubMed  CAS  Google Scholar 

  94. Holliday DL, Brouilette KT, Markert A et al (2009) Novel multicellular organotypic models of normal and malignant breast: tools for dissecting the role of the microenvironment in breast cancer progression. Breast Cancer Res 11:R3

    Article  PubMed  CAS  Google Scholar 

  95. Rhee HW, Zhau HE, Pathak S et al (2001) Permanent phenotypic and genotypic changes of prostate cancer cells cultured in a three-dimensional rotating-wall vessel. In Vitro Cell Dev Biol Anim 37:127–140

    Article  PubMed  CAS  Google Scholar 

  96. Walter-Yohrling J, Pratt BM, Ledbetter S et al (2003) Myofibroblasts enable invasion of endothelial cells into three-dimensional tumor cell clusters: a novel in vitro tumor model. Cancer Chemother Pharmacol 52:263–269

    Article  PubMed  Google Scholar 

  97. Li Q, Chen C, Kapadia A et al (2011) 3D models of epithelial-mesenchymal transition in breast cancer metastasis: high-throughput screening assay development, validation, and pilot screen. J Biomol Screen 16:141–154

    Article  PubMed  CAS  Google Scholar 

  98. Fischbach C, Chen R, Matsumoto T et al (2007) Engineering tumors with 3D scaffolds. Nat Methods 4:855–860

    Article  PubMed  CAS  Google Scholar 

  99. Agudelo-Garcia PA, De Jesus JK, Williams SP et al (2011) Glioma cell migration on three-dimensional nanofiber scaffolds is regulated by substrate topography and abolished by inhibition of STAT3 signaling. Neoplasia 13:831–840

    PubMed  CAS  Google Scholar 

  100. de Ridder L, Cornelissen M, de Ridder D (2000) Autologous spheroid culture: a screening tool for human brain tumour invasion. Crit Rev Oncol Hematol 36:107–122

    Article  PubMed  Google Scholar 

  101. Biggs T, Foreman J, Sundstrom L et al (2011) Antitumor compound testing in glioblastoma organotypic brain cultures. J Biomol Screen 16:805–817

    Article  PubMed  CAS  Google Scholar 

  102. Bruyere F, Melen-Lamalle L, Blacher S et al (2008) Modeling lymphangiogenesis in a three-dimensional culture system. Nat Methods 5:431–437

    Article  PubMed  CAS  Google Scholar 

  103. O-Charoenrat P, Rhys-Evans P, Modjtahedi H et al (2000) Overexpression of epidermal growth factor receptor in human head and neck squamous carcinoma cell lines correlates with matrix metalloproteinase-9 expression and in vitro invasion. Int J Cancer 86:307–317

    Article  PubMed  CAS  Google Scholar 

  104. Kleinman HK, Jacob K (2001) Invasion assays. Curr Protoc Cell Biol Chapter 12 :Unit 12 12

  105. Decaestecker C, Debeir O, Van Ham P et al (2007) Can anti-migratory drugs be screened in vitro? A review of 2D and 3D assays for the quantitative analysis of cell migration. Med Res Rev 27:149–176

    Article  PubMed  CAS  Google Scholar 

  106. Pickl M, Ries CH (2009) Comparison of 3D and 2D tumor models reveals enhanced HER2 activation in 3D associated with an increased response to trastuzumab. Oncogene 28:461–468

    Article  PubMed  CAS  Google Scholar 

  107. Weaver VM, Petersen OW, Wang F et al (1997) Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 137:231–245

    Article  PubMed  CAS  Google Scholar 

  108. Leslie K, Gao SP, Berishaj M et al (2010) Differential interleukin-6/Stat3 signaling as a function of cellular context mediates Ras-induced transformation. Breast Cancer Res 12:R80

    Article  PubMed  CAS  Google Scholar 

  109. Kobayashi H, Man S, Graham CH et al (1993) Acquired multicellular-mediated resistance to alkylating agents in cancer. Proc Natl Acad Sci USA 90:3294–3298

    Article  PubMed  CAS  Google Scholar 

  110. Thurber AE, Douglas G, Sturm EC et al (2011) Inverse expression states of the BRN2 and MITF transcription factors in melanoma spheres and tumour xenografts regulate the NOTCH pathway. Oncogene 30:3036–3048

    Article  PubMed  CAS  Google Scholar 

  111. Howes AL, Chiang GG, Lang ES et al (2007) The phosphatidylinositol 3-kinase inhibitor, PX-866, is a potent inhibitor of cancer cell motility and growth in three-dimensional cultures. Mol Cancer Ther 6:2505–2514

    Article  PubMed  CAS  Google Scholar 

  112. Wu YM, Tang J, Zhao P et al (2009) Morphological changes and molecular expressions of hepatocellular carcinoma cells in three-dimensional culture model. Exp Mol Pathol 87:133–140

    Article  PubMed  CAS  Google Scholar 

  113. Xiang X, Phung Y, Feng M et al (2011) The development and characterization of a human mesothelioma in vitro 3D model to investigate immunotoxin therapy. PLoS One 6:e14640

    Article  PubMed  CAS  Google Scholar 

  114. Wolf K, Mazo I, Leung H et al (2003) Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160:267–277

    Article  PubMed  CAS  Google Scholar 

  115. Pinco KA, He W, Yang JT (2002) alpha4beta1 integrin regulates lamellipodia protrusion via a focal complex/focal adhesion-independent mechanism. Mol Biol Cell 13:3203–3217

    Article  PubMed  CAS  Google Scholar 

  116. Keese CR, Wegener J, Walker SR et al (2004) Electrical wound-healing assay for cells in vitro. Proc Natl Acad Sci USA 101:1554–1559

    Article  PubMed  CAS  Google Scholar 

  117. Lampugnani MG (1999) Cell migration into a wounded area in vitro. Methods Mol Biol 96:177–182

    PubMed  CAS  Google Scholar 

  118. Yarrow JC, Perlman ZE, Westwood NJ et al (2004) A high-throughput cell migration assay using scratch wound healing, a comparison of image-based readout methods. BMC Biotechnol 4:21

    Article  PubMed  Google Scholar 

  119. Zigmond SH (1977) Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J Cell Biol 75:606–616

    Article  PubMed  CAS  Google Scholar 

  120. Zicha D, Dunn GA, Brown AF (1991) A new direct-viewing chemotaxis chamber. J Cell Sci 99(Pt 4):769–775

    PubMed  Google Scholar 

  121. Muinonen-Martin AJ, Veltman DM, Kalna G et al (2010) An improved chamber for direct visualisation of chemotaxis. PLoS One 5:e15309

    Article  PubMed  CAS  Google Scholar 

  122. Cai G, Lian J, Shapiro SS et al (2000) Evaluation of endothelial cell migration with a novel in vitro assay system. Methods Cell Sci 22:107–114

    Article  PubMed  CAS  Google Scholar 

  123. Pratt BM, Harris AS, Morrow JS et al (1984) Mechanisms of cytoskeletal regulation. Modulation of aortic endothelial cell spectrin by the extracellular matrix. Am J Pathol 117:349–354

    PubMed  CAS  Google Scholar 

  124. Albini A, Iwamoto Y, Kleinman HK et al (1987) A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 47:3239–3245

    PubMed  CAS  Google Scholar 

  125. Ohnishi T, Matsumura H, Izumoto S et al (1998) A novel model of glioma cell invasion using organotypic brain slice culture. Cancer Res 58:2935–2940

    PubMed  CAS  Google Scholar 

  126. Deryugina EI, Bourdon MA (1996) Tenascin mediates human glioma cell migration and modulates cell migration on fibronectin. J Cell Sci 109(Pt 3):643–652

    PubMed  CAS  Google Scholar 

  127. Rosen EM, Meromsky L, Setter E et al (1990) Quantitation of cytokine-stimulated migration of endothelium and epithelium by a new assay using microcarrier beads. Exp Cell Res 186:22–31

    Article  PubMed  CAS  Google Scholar 

  128. Hart IR, Fidler IF (1978) An in vitro quantitative assay for tumor cell invasion. Cancer Res 38:3218–3224

    PubMed  CAS  Google Scholar 

  129. Armstrong PB, Quigley JP, Sidebottom E (1982) Transepithelial invasion and intramesenchymal infiltration of the chick embryo chorioallantois by tumor cell lines. Cancer Res 42:1826–1837

    PubMed  CAS  Google Scholar 

  130. An Z, Gluck CB, Choy ML et al (2010) Suberoylanilide hydroxamic acid limits migration and invasion of glioma cells in two and three dimensional culture. Cancer Lett 292:215–227

    Article  PubMed  CAS  Google Scholar 

  131. Stein AM, Demuth T, Mobley D et al (2007) A mathematical model of glioblastoma tumor spheroid invasion in a three-dimensional in vitro experiment. Biophys J 92:356–365

    Article  PubMed  CAS  Google Scholar 

  132. Friedl P, Noble PB, Walton PA et al (1995) Migration of coordinated cell clusters in mesenchymal and epithelial cancer explants in vitro. Cancer Res 55:4557–4560

    PubMed  CAS  Google Scholar 

  133. Wartenberg M, Finkensieper A, Hescheler J et al (2006) Confrontation cultures of embryonic stem cells with multicellular tumor spheroids to study tumor-induced angiogenesis. Methods Mol Biol 331:313–328

    PubMed  Google Scholar 

  134. Fjellbirkeland L, Bjerkvig R, Laerum OD (1998) Non-small-cell lung carcinoma cells invade human bronchial mucosa in vitro. In Vitro Cell Dev Biol Anim 34:333–340

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are funded by Cancer Research UK grant number C309/A8274 (S.E.) and by the Oracle Cancer Trust (M.Z. and C.B.). We acknowledge NHS funding to the NIHR Biomedical Research Centre. We thank Maria Vinci (funded by the National Centre for the Replacement, Refinement and Reduction of Animals in Research; G1000121 ID no. 94513) and other members of the Tumour Biology and Metastasis group for critical reading of the manuscript and constructive advice.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 SpringerScience+Business Media New York

About this protocol

Cite this protocol

Zimmermann, M., Box, C., Eccles, S.A. (2013). Two-Dimensional vs. Three-Dimensional In Vitro Tumor Migration and Invasion Assays. In: Moll, J., Colombo, R. (eds) Target Identification and Validation in Drug Discovery. Methods in Molecular Biology, vol 986. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-311-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-311-4_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-310-7

  • Online ISBN: 978-1-62703-311-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics