Skip to main content

Reverse Phase Protein Microarrays and Their Utility in Drug Development

  • Protocol
  • First Online:
Target Identification and Validation in Drug Discovery

Abstract

The majority of human diseases, including cancer, are characterized by abnormal protein function. Proteins regulate virtually every cellular process and exhibit multiple kinds of post-translational modification that modulate expression levels and activation states, such as phosphorylation by protein kinases. Additionally proteins interact with each other in complex regulatory networks and signal transduction pathways modulated by feedback mechanisms. These pathways are disrupted in disease and altered by therapeutic drugs. Reverse phase protein microarray (RPMA) technology allows simultaneous measurement of numerous phosphorylated, glycosylated, cleaved, or total cellular proteins from complex mixtures in many samples at once. Therefore, RPMAs can provide a portrait of a cell’s signaling pathways in diseased states, before and after treatment with drugs, and allows comparison of changes in drug-resistant and sensitive cells. Furthermore, the technology offers a means of connecting genomic abnormalities in cancer to targetable alterations in protein signaling pathways, even for genetic events that seem otherwise undruggable. Consequently, the RPMA platform has great utility in many steps of drug development including target identification, validation of a pharmaceutical agent’s efficacy, understanding mechanisms of action, and discovery of biomarkers that predict or guide therapeutic response. RPMAs have become a powerful tool for drug development and are now being integrated into human clinical cancer trials, where they are being used to personalize therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chua HN, Wong L (2008) Increasing the reliability of protein interactomes. Drug Discov Today 13:652–658

    Article  PubMed  CAS  Google Scholar 

  2. Miernyk JA, Thelen JJ (2008) Biochemical approaches for discovering protein-protein interactions. Plant J 53:597–609

    Article  PubMed  CAS  Google Scholar 

  3. Smith C (2003) Drug target validation: hitting the target. Nature 422:341

    Google Scholar 

  4. Walsh CT, Garneau-Tsodikova S, Gatto GJJ (2001) Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed 44:7342–7372

    Article  Google Scholar 

  5. Paweletz CP, Liotta LA, Petricoin EF (2001) New technologies for biomarker analysis of prostate cancer progression: laser capture microdissection and tissue proteomics. Urology 57:160–163

    Article  PubMed  CAS  Google Scholar 

  6. Mueller C, Liotta LA, Espina V (2010) Reverse phase protein microarrays advance to use in clinical trials. Mol Oncol 4:461–481

    Article  PubMed  CAS  Google Scholar 

  7. Pierobon M, VanMeter AJ, Moroni N et al (2012) Reverse-phase protein microarrays. Methods Mol Biol 823:215–235

    Article  PubMed  CAS  Google Scholar 

  8. Espina V, Wulfkuhle J, Calvert VS et al (2008) Reverse phase protein microarrays for theranostics and patient-tailored therapy. Methods Mol Biol 441:113–128

    Article  PubMed  CAS  Google Scholar 

  9. Wilson B, Liotta LA, Petricoin E (2010) Monitoring proteins and protein networks using reverse phase protein arrays. Dis Markers 28:225–232

    PubMed  CAS  Google Scholar 

  10. Espina V, Wulfkuhle JD, Calvert VS et al (2007) Reverse phase protein microarrays for monitoring biological responses. Methods Mol Biol 383:321–336

    PubMed  CAS  Google Scholar 

  11. Gallagher RI, Silvestri A, Petricoin EF et al (2011) Reverse phase protein microarrays: fluorometric and colorimetric detection. Methods Mol Biol 723:275–301

    Article  PubMed  CAS  Google Scholar 

  12. Brase JC, Mannsperger H, Sultmann H et al (2011) Antibody-mediated signal amplification for reverse phase protein array-based protein quantification. Methods Mol Biol 785:55–64

    Article  PubMed  CAS  Google Scholar 

  13. Brase JC, Mannsperger H, Frohlich H et al (2010) Increasing the sensitivity of reverse phase protein arrays by antibody-mediated signal amplification. Proteome Sci 8:36

    Article  PubMed  Google Scholar 

  14. Espina V, Woodhouse EC, Wulfkuhle J et al (2004) Protein microarray detection strategies: focus on direct detection technologies. J Immunol Methods 290:121–133

    Article  PubMed  CAS  Google Scholar 

  15. VanMeter AJ, Rodriguez AS, Bowman ED et al (2008) Laser capture microdissection and protein microarray analysis of human non-small cell lung cancer: differential epidermal growth factor receptor (EGPR) phosphorylation events associated with mutated EGFR compared with wild type. Mol Cell Proteomics 7:1902–1924

    Article  PubMed  CAS  Google Scholar 

  16. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  17. Sheehan KM, Calvert VS, Kay EW et al (2005) Use of reverse phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol Cell Proteomics 4:346–355

    Article  PubMed  CAS  Google Scholar 

  18. Improta G, Zupa A, Fillmore H et al (2001) Protein pathway activation mapping of brain metastasis from lung and breast cancers reveals organ type specific drug target activation. J Proteome Res 10:3089–3097

    Article  Google Scholar 

  19. Agrawal N, Frederick MJ, Pickering CR et al (2011) Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 333:1154–1157

    Article  PubMed  CAS  Google Scholar 

  20. Frederick MJ, VanMeter AJ, Gadhikar MA et al (2011) Phosphoproteomic analysis of signaling pathways in head and neck squamous cell carcinoma patient samples. Am J Pathol 178(2):548–571

    Article  PubMed  CAS  Google Scholar 

  21. Accordi B, Espina V, Giordan M et al (2010) Functional protein network activation mapping reveals new potential molecular drug targets for poor prognosis pediatric BCP-ALL. PLoS One (Electronic Resource) 5:e13552

    Article  Google Scholar 

  22. Lu Y, Muller M, Smith D et al (2010) Kinome siRNA-phosphoproteomic screen identifies networks regulating AKT signaling. Oncogene 30:4567–4577

    Article  Google Scholar 

  23. Pierobon M, Calvert V, Belluco C et al (2009) Multiplexed cell signaling analysis of metastatic and nonmetastatic colorectal cancer reveals COX2-EGFR signaling activation as a potential prognostic pathway biomarker. Clin Colorectal Cancer 8:110–117

    Article  CAS  Google Scholar 

  24. Espina V, Mariani BD, Gallagher RI et al (2010) Malignant precursor cells pre-exist in human breast DCIS and require autophagy for survival. PLoS One (Electronic Resource) 5:e10240

    Article  Google Scholar 

  25. Lavezzari G, Lackner MR (2012) Monitoring phosphoproteomic response to targeted kinase inhibitors using reverse-phase protein microarrays. Methods Mol Biol 795:203–215

    Article  PubMed  CAS  Google Scholar 

  26. Martiny-Baron G, Haasen D, D’Dorazio D et al (2011) Characterization of kinase inhibitors using reverse phase protein arrays. Methods Mol Biol 785:79–107

    Article  PubMed  CAS  Google Scholar 

  27. Gopal YN, Deng W, Woodman SE et al (2001) Basal and treatment-induced activation of AKT mediates resistance to cell death by AZD6244 (ARRY-142886) in Braf-mutant human cutaneous melanoma cells. Cancer Res 70:8736–8747

    Article  Google Scholar 

  28. Miller TW, Hennessy BT, Gonzalez-Angulo AM et al (2001) Hyperactivation of phosphatidylinositol-3 kinase promotes escape from hormone dependence in estrogen receptor-positive human breast cancer. J Clin Invest 120:2406–2413

    Article  Google Scholar 

  29. Wei X, Guo W, Wu S et al (2009) Inhibiting JNK dephosphorylation and induction of apoptosis by novel anticancer agent NSC-741909 in cancer cells. J Biol Chem 284:16948–16955

    Article  PubMed  CAS  Google Scholar 

  30. Espina V, Liotta LA, Petricoin EF (2009) Reverse-phase protein microarrays for theranostics and patient tailored therapy. Methods Mol Biol 520:89–105

    Article  PubMed  CAS  Google Scholar 

  31. Stuart D, Sellers WR (2009) Linking somatic genetic alterations in cancer to therapeutics. Curr Opin Cell Biol 21:304–310

    Article  PubMed  CAS  Google Scholar 

  32. Hamburg MA, Collins FS (1922) The path to personalized medicine (Erratum appears in N Engl J Med. 2010 Sep 9;363(11):1092). N Engl J Med 363:301–304

    Article  Google Scholar 

  33. Macconaill LE, Garraway LA (2010) Clinical implications of the cancer genome. J Clin Oncol 28:5219–5228

    Article  PubMed  Google Scholar 

  34. Pierobon M, Belluco C, Liotta LA et al (2011) Reverse phase protein microarrays for clinical applications. Methods Mol Biol 785:3–12

    Article  PubMed  CAS  Google Scholar 

  35. Zha H, Raffeld M, Charboneau L et al (2004) Similarities of prosurvival signals in Bcl-2-positive and Bcl-2-negative follicular lymphomas identified by reverse phase protein microarray. Lab Invest 84:235–244

    Article  PubMed  CAS  Google Scholar 

  36. Liotta LA, Kohn EC, Petricoin EF (1914) Clinical proteomics: personalized molecular medicine. JAMA 286:2211–2214

    Article  Google Scholar 

  37. Espina V, Dettloff KA, Cowherd S et al (2004) Use of proteomic analysis to monitor responses to biological therapies. Expert Opin Biol Ther 4:83–93 (Review) (95 refs)

    Article  PubMed  CAS  Google Scholar 

  38. Petricoin EF, Espina V, Araujo RP et al (2001) Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer Res 67:3431–3440

    Article  Google Scholar 

  39. Berg D, Wolff C, Langer R et al (2011) Discovery of new molecular subtypes in oesophageal adenocarcinoma. PLoS One (Electronic Resource) 6:e23985

    Article  CAS  Google Scholar 

  40. Von H, Stephenson JJ Jr, Rosen P et al (2010) Pilot study using molecular profiling of patients’ tumors to find potential targets and select treatments for their refractory cancers. J Clin Oncol 28:4877–4883

    Article  Google Scholar 

  41. Liotta LA, Petricoin EF (2012) Regulatory approval pathways for molecular diagnostic technology. Methods Mol Biol 823:409–420

    Article  PubMed  Google Scholar 

  42. Rapkiewicz A, Espina V, Zujewski JA et al (1925) The needle in the haystack: application of breast fine-needle aspirate samples to quantitative protein microarray technology. Cancer 111:173–184

    Article  Google Scholar 

  43. Espina V, Mueller C (2012) Reduction of preanalytical variability in specimen procurement for molecular profiling. Methods Mol Biol 823:49–57

    Article  PubMed  CAS  Google Scholar 

  44. Silvestri A, Colombatti A, Calvert VS et al (2010) Protein pathway biomarker analysis of human cancer reveals requirement for upfront cellular-enrichment processing. Lab Invest 90:787–796

    Article  PubMed  CAS  Google Scholar 

  45. Van L, Nordgard SH, Lingjaerde OC et al (1928) Allele-specific copy number analysis of tumors. Proc Natl Acad Sci USA 107:16910–16915

    Article  Google Scholar 

  46. Hennessy BT, Lu Y, Gonzalez-Angulo AM et al (2010) A technical assessment of the utility of reverse phase protein arrays for the study of the functional proteome in non-microdissected human breast cancers. Clin Proteomics 6:129–151

    Article  PubMed  CAS  Google Scholar 

  47. Berg D, Wolff C, Malinowsky K et al (2012) Profiling signalling pathways in formalin-fixed and paraffin-embedded breast cancer tissues reveals cross-talk between EGFR, HER2, HER3 and uPAR. J Cell Physiol 227:204–212

    Article  PubMed  CAS  Google Scholar 

  48. Gonzalez-Angulo AM, Hennessy BT, Meric-Bernstam F et al (2011) Functional proteomics can define prognosis and predict pathologic complete response in patients with breast cancer. Clin Proteomics 8:11

    Article  PubMed  Google Scholar 

  49. Paweletz CP, Charboneau L, Bichsel VE et al (2001) Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20(16):1981–1989

    Article  PubMed  CAS  Google Scholar 

  50. Ornstein DK, Gillespie JW, Paweletz CP et al (2000) Proteomic analysis of laser capture microdissected human prostate cancer and in vitro prostate cell lines. Electrophoresis 21:2235–2242

    Article  PubMed  CAS  Google Scholar 

  51. Mueller C, Edmiston KH, Carpenter C et al (2011) One-step preservation of phosphoproteins and tissue morphology at room temperature for diagnostic and research specimens. PLoS One (Electronic Resource) 6:e23780

    Article  CAS  Google Scholar 

  52. Espina V, Edmiston KH, Heiby M et al (2008) A portrait of tissue phosphoprotein stability in the clinical tissue procurement process. Mol Cell Proteomics 7:1998–2018

    Article  PubMed  CAS  Google Scholar 

  53. Espina V, Mueller C, Edmiston K et al (2009) Tissue is alive: new technologies are needed to address the problems of protein biomarker pre-analytical variability. Proteomics Clin Appl 3:874–882

    Article  PubMed  CAS  Google Scholar 

  54. Holzer TR, Fulford AD, Arkins AM et al (2011) Ischemic time impacts biological integrity of phospho-proteins in PI3K/Akt, Erk/MAPK, and p38 MAPK signaling networks. Anticancer Res 31:2073–2081

    PubMed  CAS  Google Scholar 

  55. Wolff C, Schott C, Malinowsky K et al (2011) Producing reverse phase protein microarrays from formalin-fixed tissues. Methods Mol Biol 785:123–140

    Article  PubMed  CAS  Google Scholar 

  56. Wolff C, Schott C, Porschewski P et al (2011) Successful protein extraction from over-fixed and long-term stored formalin-fixed tissues (Erratum appears in PLoS One. 2011;6(4). doi:10.1371/annotation/a42e114f-a708-4423-8a3e-a1d8919b9b60). PLoS One (Electronic Resource) 6:e16353

    Article  CAS  Google Scholar 

  57. Berg D, Malinowsky K, Reischauer B et al (2011) Use of formalin-fixed and paraffin-embedded tissues for diagnosis and therapy in routine clinical settings. Methods Mol Biol 785:109–122

    Article  PubMed  CAS  Google Scholar 

  58. Spurrier B, Washburn FL, Asin S et al (2007) Antibody screening database for protein kinetic modeling. Proteomics 7:3259–3263

    Article  PubMed  CAS  Google Scholar 

  59. Mannsperger H, Uhlmann S, Korf U et al (2011) Utilization of RNAi to validate antibodies for reverse phase protein arrays. Methods Mol Biol 785:45–54

    Article  PubMed  CAS  Google Scholar 

  60. Berg D, Hipp S, Malinowsky K et al (2010) Molecular profiling of signalling pathways in formalin-fixed and paraffin-embedded cancer tissues. Eur J Cancer 46:47–55

    Article  PubMed  CAS  Google Scholar 

  61. Espina V, Mueller C, Liotta LA (2011) Phosphoprotein stability in clinical tissue and its relevance for reverse phase protein microarray technology. Methods Mol Biol 785:23–43

    Article  PubMed  CAS  Google Scholar 

  62. Malinowsky K, Wolff C, Gundisch S et al (2010) Targeted therapies in cancer—challenges and chances offered by newly developed techniques for protein analysis in clinical tissues. J Cancer 2:26–35

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 SpringerScience+Business Media New York

About this protocol

Cite this protocol

Sereni, M.I., Pierobon, M., Angioli, R., Petricoin, E.F., Frederick, M.J. (2013). Reverse Phase Protein Microarrays and Their Utility in Drug Development. In: Moll, J., Colombo, R. (eds) Target Identification and Validation in Drug Discovery. Methods in Molecular Biology, vol 986. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-311-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-311-4_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-310-7

  • Online ISBN: 978-1-62703-311-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics