Skip to main content

Application of the CIRAD Mass Spectrometry Approach for Lysine Acetylation Site Discovery

  • Protocol
  • First Online:
Protein Acetylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 981))

Abstract

Mass spectrometry (MS)-based methods typically assess acetylation by detection of a diagnostic ion at 126.1 m/z, corresponding to the immonium ion of acetyl-lysine –NH3, which is generated by collisionally induced dissociation. A novel implementation of this approach, based on the accurate mass and retention time technique, couples high mass resolution measurement with rapid cycling between low and elevated collision energies to generate intact and fragment high-resolution mass spectra. This allows acetyl lysine diagnostic ions at 126.1 m/z to be monitored and aligned to the precursor m/z based on retention time profile. The technique is termed Collisionally Induced Release of Acetyl Diagnostic. Sequence information is also obtained for acetylation site assignment. This technique to identify acetylation species is information independent as it does not require the sequence of the protein/peptides to identify acetylation, and thus complementary to data-dependent methods. It is suitable for analysis of acetylated peptides, or proteins enriched by immunoprecipitation with acetyl lysine-specific antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840

    Article  PubMed  CAS  Google Scholar 

  2. Mischerikow N, Heck AJ (2011) Targeted large-scale analysis of protein acetylation. Proteomics 11:571–589

    Article  PubMed  CAS  Google Scholar 

  3. Borchers C, Parker CE, Deterding LJ, Tomer KB (1999) Preliminary comparison of precursor scans and liquid chromatography–tandem mass spectrometry on a hybrid quadrupole time-of-flight mass spectrometer. J Chromatogr A 854:119–130

    Article  PubMed  CAS  Google Scholar 

  4. Kim JY, Kim KW, Kwon HJ, Lee DW, Yoo JS (2002) Probing lysine acetylation with a modification specific marker ion using high-performance liquid chromatography/electrospray-mass spectrometry with collision-induced dissociation. Anal Chem 74:5443–5449

    Article  PubMed  CAS  Google Scholar 

  5. Dormeyer W, Ott M, Schnolzer M (2005) Probing lysine acetylation in proteins: strategies, limitations, and pitfalls of in vitro acetyl-transferase assays. Mol Cell Proteomics 4: 1226–1239

    Article  PubMed  CAS  Google Scholar 

  6. Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312:212–217

    Article  PubMed  CAS  Google Scholar 

  7. Walther TC, Mann M (2010) Mass spectrometry-based proteomics in cell biology. J Cell Biol 190:491–500

    Article  PubMed  CAS  Google Scholar 

  8. Ow SY, Noirel J, Salim M, Evans C, Watson R, Wright PC (2010) Balancing robust quantification and identification for iTRAQ: application of UHR-ToF MS. Proteomics 10:2205–2213

    Article  PubMed  CAS  Google Scholar 

  9. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:551–567

    Article  Google Scholar 

  10. Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang XJ, Zhao Y (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23:607–618

    Article  PubMed  CAS  Google Scholar 

  11. Leech SH, Evans CA, Shaw L, Wong CH, Connolly J, Griffiths JR, Whetton AD, Corfe BM (2008) Proteomic analyses of intermediate filaments reveals cytokeratin8 is highly acetylated—implications for colorectal epithelial homeostasis. Proteomics 8:279–288

    Article  PubMed  CAS  Google Scholar 

  12. Yang XJ, Seto E (2008) Lysine acetylation: codified cross talk with other post translational modifications. Mol Cell 31:449–461

    Article  PubMed  CAS  Google Scholar 

  13. Unwin R, Griffiths J, Leverentz M, Grallert A, Hagan I, Whetton A (2005) Multiple reaction monitoring to identify sites of protein phosphorylation with high sensitivity. Mol Cell Proteomics 4:1134–1144

    Article  PubMed  CAS  Google Scholar 

  14. Mollah S, Wertz IE, Phung Q, Arnott D, Dixit VM, Lill JR (2007) Targeted mass spectrometric strategy for global mapping of ubiquitination on proteins. Rapid Commun Mass Spectrom 21:3357–3364

    Article  PubMed  CAS  Google Scholar 

  15. Griffiths J, Unwin R, Evans C, Leech S, Corfe B, Whetton A (2007) The application of hypothesis driven strategy to the sensitive detection and location of acetylated lysine residues. JASMS 18:1423–1428

    CAS  Google Scholar 

  16. Lange V, Picotti P, Domon B, Aebersold R (2008) Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol 4:222–235

    Article  PubMed  Google Scholar 

  17. Liu B, Lin Y, Darwanto A, Song X, Xu G, Zhang K (2009) Identification and characterization of propionylation at histone H3 lysine 23 in mammalian cells. J Biol Chem 284:32288–32295

    Article  PubMed  CAS  Google Scholar 

  18. Li GZ, Vissers JP, Silva JC, Golick D, Gorenstein MV, Geromanos SJ (2009) Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics 9(6):1696–1719

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Engineering and Physical Sciences Research Council, ChELSI initiative EP/E036252/1 (CE, OSY, PCW), Cancer Research UK (DS), and Biochemical Biophysical Research Council (BMC). We thank the Bruker Daltonik GmbH research team, in particular Peter Sander, for provision and discussion on the Dissect algorithm.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Evans, C.A., Ow, S.Y., Smith, D.L., Corfe, B.M., Wright, P.C. (2013). Application of the CIRAD Mass Spectrometry Approach for Lysine Acetylation Site Discovery. In: Hake, S., Janzen, C. (eds) Protein Acetylation. Methods in Molecular Biology, vol 981. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-305-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-305-3_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-304-6

  • Online ISBN: 978-1-62703-305-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics