Skip to main content

Computational Prediction of Lysine Acetylation Proteome-Wide

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 981))

Abstract

Several studies have contributed to our knowledge of the enzymology underlying acetylation, including focused efforts to understand the molecular mechanism of substrate recognition by several acetyltransferases; however, conventional experiments to determine intrinsic features of substrate site specificity have proven challenging. In this chapter, I describe in detail a computational method that involves clustering analysis of protein sequences to predict protein acetylation based on the sequence characteristics of acetylated lysines within histones. This method illustrates that sequence composition has predictive power on datasets of acetylation marks, and can be used to predict other posttranslational modifications such as methylation and phosphorylation. Later in this chapter, other recent methods to predict lysine acetylation are described and together, these approaches combined with more traditional experimental methods, can be useful for identifying acetylated substrates proteome-wide.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mujtaba S, Zeng L, Zhou MM (2007) Structure and acetyl-lysine recognition of the bromodomain. Oncogene 26:5521–5527

    Article  PubMed  CAS  Google Scholar 

  2. Liu X, Wang L, Zhao K, Thompson PR, Hwang Y, Marmorstein R et al (2008) The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature 451:846–850

    Article  PubMed  CAS  Google Scholar 

  3. Marmorstein R (2001) Structure of histone acetyltransferases. J Mol Biol 311:433–444

    Article  PubMed  CAS  Google Scholar 

  4. Marmorstein R, Roth SY (2001) Histone acetyltransferases: function, structure, and catalysis. Curr Opin Genet Dev 11:155–161

    Article  PubMed  CAS  Google Scholar 

  5. Wang L, Tang Y, Cole PA, Marmorstein R (2008) Structure and chemistry of the p300/CBP and Rtt109 histone acetyltransferases: implications for histone acetyltransferase evolution and function. Curr Opin Struct Biol 18: 741–747

    Article  PubMed  CAS  Google Scholar 

  6. Rojas JR, Trievel RC, Zhou J, Mo Y, Li X, Berger SL et al (1999) Structure of Tetrahymena GCN5 bound to coenzyme A and a histone H3 peptide. Nature 401:93–98

    Article  PubMed  CAS  Google Scholar 

  7. Glozak MA, Sengupta N, Zhang X, Seto E (2005) Acetylation and deacetylation of non-histone proteins. Gene 363:15–23

    Article  PubMed  CAS  Google Scholar 

  8. Sterner DE, Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64:435–459

    Article  PubMed  CAS  Google Scholar 

  9. Yang XJ, Seto E (2008) Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell 31:449–461

    Article  PubMed  CAS  Google Scholar 

  10. Gu W, Roeder RG (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90:595–606

    Article  PubMed  CAS  Google Scholar 

  11. Cereseto A, Manganaro L, Gutierrez MI, Terreni M, Fittipaldi A, Lusic M et al (2005) Acetylation of HIV-1 integrase by p300 regulates viral integration. EMBO J 24:3070–3081

    Article  PubMed  CAS  Google Scholar 

  12. Wynshaw-Boris A (2009) Elongator bridges tubulin acetylation and neuronal migration. Cell 136:393–394

    Article  PubMed  CAS  Google Scholar 

  13. Ozaki T, Okoshi R, Sang M, Kubo N, Nakagawara A (2009) Acetylation status of E2F-1 has an important role in the regulation of E2F-1-mediated transactivation of tumor suppressor p73. Biochem Biophys Res Commun 386:207–211

    Article  PubMed  CAS  Google Scholar 

  14. Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J et al (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23:607–618

    Article  PubMed  CAS  Google Scholar 

  15. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC et al (2009) Lysine acetylation targets protein complexes and ­co-regulates major cellular functions. Science 325:834–840

    Article  PubMed  CAS  Google Scholar 

  16. Kimura A, Horikoshi M (1998) How do histone acetyltransferases select lysine residues in core histones? FEBS Lett 431:131–133

    Article  PubMed  CAS  Google Scholar 

  17. Kimura A, Horikoshi M (1998) Tip60 acetylates six lysines of a specific class in core histones in vitro. Genes Cells 3:789–800

    Article  PubMed  CAS  Google Scholar 

  18. Bannister AJ, Miska EA, Gorlich D, Kouzarides T (2000) Acetylation of importin-alpha nuclear import factors by CBP/p300. Curr Biol 10: 467–470

    Article  PubMed  CAS  Google Scholar 

  19. Hirayama J, Sahar S, Grimaldi B, Tamaru T, Takamatsu K, Nakahata Y et al (2007) CLOCK-mediated acetylation of BMAL1 ­controls circadian function. Nature 450: 1086–1090

    Article  PubMed  CAS  Google Scholar 

  20. Sampath SC, Marazzi I, Yap KL, Krutchinsky AN, Mecklenbrauker I, Viale A et al (2007) Methylation of a histone mimic within the histone methyltransferase G9a regulates protein complex assembly. Mol Cell 27:596–608

    Article  PubMed  CAS  Google Scholar 

  21. Marmorstein R (2001) Structure and function of histone acetyltransferases. Cell Mol Life Sci 58:693–703

    Article  PubMed  CAS  Google Scholar 

  22. Eddy SR (2004) Where did the BLOSUM62 alignment score matrix come from? Nat Biotechnol 22:1035–1036

    Article  PubMed  CAS  Google Scholar 

  23. Cooper GF, Aliferis CF, Ambrosino R, Aronis J, Buchanan BG, Caruana R et al (1997) An evaluation of machine-learning methods for predicting pneumonia mortality. Artif Intell Med 9:107–138

    Article  PubMed  CAS  Google Scholar 

  24. Schwartz D, Chou MF, Church GM (2009) Predicting protein post-translational modifications using meta-analysis of proteome scale data sets. Mol Cell Proteomics 8: 365–379

    PubMed  CAS  Google Scholar 

  25. Gnad F, Ren S, Choudhary C, Cox J, Mann M (2010) Predicting post-translational lysine acetylation using support vector machines. Bioinformatics 26:1666–1668

    Article  PubMed  CAS  Google Scholar 

  26. Gnad F, de Godoy LM, Cox J, Neuhauser N, Ren S, Olsen JV et al (2009) High-accuracy identification and bioinformatic analysis of in vivo protein phosphorylation sites in yeast. Proteomics 9:4642–4652

    Article  PubMed  CAS  Google Scholar 

  27. Gnad F, Ren S, Cox J, Olsen JV, Macek B, Oroshi M et al (2007) PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biol 8:R250

    Article  PubMed  Google Scholar 

  28. Chang WC, Lee TY, Shien DM, Hsu JB, Horng JT, Hsu PC et al (2009) Incorporating support vector machine for identifying protein tyrosine sulfation sites. J Comput Chem 30: 2526–2537

    Article  PubMed  CAS  Google Scholar 

  29. Li A, Xue Y, Jin C, Wang M, Yao X (2006) Prediction of Nepsilon-acetylation on internal lysines implemented in Bayesian Discriminant Method. Biochem Biophys Res Commun 350:818–824

    Article  PubMed  CAS  Google Scholar 

  30. Xu Y, Wang XB, Ding J, Wu LY, Deng NY (2010) Lysine acetylation sites prediction using an ensemble of support vector machine classifiers. J Theor Biol 264:130–135

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Basu, A. (2013). Computational Prediction of Lysine Acetylation Proteome-Wide. In: Hake, S., Janzen, C. (eds) Protein Acetylation. Methods in Molecular Biology, vol 981. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-305-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-305-3_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-304-6

  • Online ISBN: 978-1-62703-305-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics