Skip to main content

Comparative Genomics of the Dictyostelids

  • Protocol
  • First Online:
Dictyostelium discoideum Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 983))

Abstract

The complete genomes of Dictyostelium discoideum, Dictyostelium purpureum, Polysphondylium pallidum and Dictyostelium fasciculatum have been sequenced. The proteins predicted to be encoded by the genes in each species have been compared to each other as well as to the complete compilation of nonredundant proteins from bacteria, plants, fungi, and animals. Likely functions have been assigned to about half of the proteins on the basis of sequence similarity to proteins with experimentally defined functions or properties. Even when the sequence similarity is not sufficiently high to have much confidence in the predicted function of the dictyostelid proteins, the shared ancestry of the proteins can often be clearly recognized. The degree of divergence within such clusters of orthologous proteins can then be used to establish the evolutionary pathways leading to each species and estimate the approximate time of divergence. This approach has established that the dictyostelids are a monophyletic group with four major groups that diverged from the line leading to animals shortly before the fungi. D. fasciculatum and P. pallidum are representatives of group 1 and group 2 dictyostelids, respectively. Their common ancestor diverged about 600–800 million years ago from the line leading to D. discoideum and D. purpureum which are group 4 dictyostelids. Each of these species encodes about 11,000–12,000 proteins which is almost twice that in the yeasts. Most of the genes known to be involved in specific signal transduction pathways that mediate intercellular communication are present in each of the sequenced species but both P. pallidum and D. fasciculatum appear to be missing the gene responsible for synthesis of GABA, gadA, suggesting that release of the SDF-2 precursor AcbA is not regulated by GABA in these species as it is in D. discoideum. Likewise, the gene responsible for making cytokinins, iptA, appears to have entered by horizontal gene transfer from bacteria into the genome of the common ancestor of group 4 dictyostelids after they diverged from the group 1 and 2 species. Therefore, it is unlikely that P. pallidum or D. fasciculatum has the ability to make or respond to the cytokinin discadenine which induces rapid encapsulation of spores and maintains their dormancy in D. discoideum. Other predictions from comparative genomics among the dictyostelids are reviewed and evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schaap P, Winckler T, Nelson M, Alvarez-Curto E, Elgie B, Hagiwara H, Cavender J, Milano-Curto A, Rozen DE, Dingermann T, Mutzel TR, Baldauf SL (2006) Molecular phylogeny and evolution of morphology in the social amoebas. Science 314:661–663

    Article  PubMed  CAS  Google Scholar 

  2. Eichinger L, Pachebat J, Glockner G, Rajandream M-A, Sucgang R, Berriman M, Song J, Olsen R, Szafranski K, Xu Q, Tunggal B, Kummerfeld S, Madera M, Konfortov A, Rivero F, Bankier A, Lehmann R, Hamlin N, Davies R, Gaudet P, Fey P, Pilcher K, Chen G, Saunders D, Sodergen E, Davis P, Kehornou A, Nie X, Hall N, Anjard C, Hemphill L, Bason N, Farbrother P, Desany B, Just E, Morio T, Rost R, Churcher C, Cooper J, Haydock S, van Driessche N, Cronin A, Goodhead I, Muzny D, Mourier T, Pain A, Lu M, Harper D, Lindsay R, Hauser H, James K, Quiles M, Mohan M, Saito T, Buchrieser C, Wardroper A, Felder, Thangavelu M, Johnson D, Knights A, Loulseged H, Mungall KM, Oliver K, Price C, Quail M, Urushihara H, Hernadez J, Rabbinowitsch E, Steffen D, Sanders M, Ma J, Kohara Y, Sharp S, Simmonds M, Spiegler S, Tivey A, Sugano S, White B, Walker D, Woodward J, Winckler T, Tanaka Y, Shaulsky G, Schleicher M, Weinstock G, Rosenthal A, Cox E, Chisholm R, Gibbs R, Loomis WF, Platzer M, Kay RR, Williams J, Dear P, Noegel AA, Barrell B, Kuspa A (2005) The genome of the social amoeba Dictyostelium discoideum. Nature 435:43–57

    Article  PubMed  CAS  Google Scholar 

  3. Sucgang R, Kuo A, Tian X, Salerno W, Parikh A, Fasley C, Dalin E, Tu H, Huang E, Barry K, Lindquist E, Shapiro H, Bruc D, Schmutz J, Fey P, Gaudet P, Anjard C, Mohan M, Basu S, Bushmanova Y, van der Wel H, Katoh M, Coutinho P, Saito T, Elias M, Schaap P, Kay R, Henrissat B, Eichinger L, Rivero-Crespo F, Putnam N, West C, Loomis WF, Chisholm R, Shaulsky G, Strassmann J, Queller D, Kuspa A, Grigoriev I (2011) Comparative genomics of the social amoebae Dictyostelium discoideum and Dictyostelium purpureum. Genome Biol 12:R20

    Article  PubMed  CAS  Google Scholar 

  4. Heidel A, Lawal HM, Felder M, Schilde C, Helps NR, Tunggal B, Rivero F, John U, Schleicher M, Eichinger L, Platzer M, Noegel AA, Schaap P, Glöckner G (2011) Phylogeny-wide analysis of social amoeba genomes highlights ancient origins for complex intercellular communication. Genome Res 21:1882–1891

    Article  PubMed  CAS  Google Scholar 

  5. Raper KB (1935) Dictyostelium discoideum, a new species of slime mold from decaying forest leaves. J Agric Res 50:135–147

    Google Scholar 

  6. Raper KB (1940) Pseudoplasmodium formation and organization in Dictyostelium discoideum. J Elisha Mitchell Sci Soc 56:241–282

    Google Scholar 

  7. Bonner JT (1959) The cellular slime molds. Princeton Univ. Press, Princeton, NJ

    Google Scholar 

  8. Bonner JT (2009) The social amoebae. Princeton Univ. Press, Princeton, NJ

    Google Scholar 

  9. Loomis WF (1975) Dictyostelium discoideum. A developmental system. Academic, New York

    Google Scholar 

  10. Loomis WF (1982) The development of Dictyostelium discoideum. Academic, New York

    Google Scholar 

  11. Kessin RH (2001) Dictyostelium—evolution, cell biology, and the development of multicellularity. Cambridge Univ. Press, Cambridge

    Book  Google Scholar 

  12. Loomis WF, Welker D, Hughes J, Maghakian D, Kuspa A (1995) Integrated maps of the chromosomes in Dictyostelium discoideum. Genetics 141:147–157

    PubMed  CAS  Google Scholar 

  13. Olsen RM (2005) How many protein encoding genes does Dictyostelium discoideum have? In: Loomis WF, Kuspa A (eds) Dictyostelium genomics. Horizon Bioscience, Wymondham, pp 265–278

    Google Scholar 

  14. Loomis WF, Smith DW (1990) Molecular phylogeny of Dictyostelium discoideum by protein sequence comparison. Proc Natl Acad Sci U S A 87:9093–9097

    Article  PubMed  CAS  Google Scholar 

  15. Goldberg JM, Manning G, Liu A, Fey P, Pilcher KE, Xu Y, Smith JL (2006) The Dictyostelium kinome—analysis of the protein kinases from a simple model organism. PLoS Genet 2:e38

    Article  PubMed  Google Scholar 

  16. Loomis WF (2005) Mapping and sequencing the Dictyostelium genome. In: Loomis WF, Kuspa A (eds) Dictyostelium genomics. Horizon Bioscience, Wymondham, pp 1–22

    Google Scholar 

  17. Loomis WF (2006) The Dictyostelium genome. Curr Issues Mol Biol 8:63–73

    PubMed  CAS  Google Scholar 

  18. Kuspa A, Loomis WF (2006) The genome of Dictyostelium discoideum. Methods Mol Biol 346:15–30

    PubMed  CAS  Google Scholar 

  19. Payne SH (2005) Metabolic pathways. In: Loomis WF, Kuspa A (eds) Dictyostelium genomics. Horizon Bioscience, Wymondham, pp 41–58

    Google Scholar 

  20. Payne SH, Loomis WF (2006) Retention and loss of amino acid biosynthetic pathways based on analysis of whole-genome sequences. Eukaryot Cell 5:272–276

    Article  PubMed  CAS  Google Scholar 

  21. Franke J, Kessin R (1977) A defined minimal medium for axenic strains of Dictyostelium discoideum. Proc Natl Acad Sci U S A 74:2157–2161

    Article  PubMed  CAS  Google Scholar 

  22. Gomer R, Jang W, Brazill D (2011) Cell density sensing and size determination. Dev Growth Differ 53:482–494

    Article  PubMed  CAS  Google Scholar 

  23. Pitt G, Brandt R, Lin KC, Devreotes PN, Schaap P (1993) Extracellular cAMP is sufficient to restore developmental gene expression and morphogenesis in Dictyostelium cells lacking the aggregation adenylyl cyclase (ACA). Genes Dev 7:2172–2180

    Article  PubMed  CAS  Google Scholar 

  24. Mann S, Brown JM, Briscoe C, Parent C, Pitt G, Devreotes PN, Firtel RA (1997) Role of cAMP-dependent protein kinase in controlling aggregation and postaggregative development in Dictyostelium. Dev Biol 183:208–221

    Article  PubMed  CAS  Google Scholar 

  25. Parent CA, Devreotes PN (1999) A cell’s sense of direction. Science 284:765–770

    Article  PubMed  CAS  Google Scholar 

  26. Swaney K, Huang CH, Devreotes PN (2010) Eukaryotic chemotaxis: a network of signaling pathways controls motility, directional sensing, and polarity. Annu Rev Biophys 39:265–289

    Article  PubMed  CAS  Google Scholar 

  27. Thompson CRL, Kay RR (2000) The role of DIF-1 signaling in Dictyostelium development. Mol Cell 6:1509–1514

    Article  PubMed  CAS  Google Scholar 

  28. Anjard C, Loomis WF (2005) Peptide signaling during terminal differentiation of Dictyostelium. Proc Natl Acad Sci U S A 102:7607–7611

    Article  PubMed  CAS  Google Scholar 

  29. Anjard C, Loomis WF (2006) GABA induces terminal differentiation of Dictyostelium through a GABA(B) receptor. Development 133:2253–2261

    Article  PubMed  CAS  Google Scholar 

  30. Anjard C, Loomis WF (2008) Cytokinins induce sporulation in Dictyostelium. Development 135:819–827

    Article  PubMed  CAS  Google Scholar 

  31. Anjard C, Su Y, Loomis WF (2009) Steroids initiate a signaling cascade that triggers rapid sporulation in Dictyostelium. Development 136:803–812

    Article  PubMed  CAS  Google Scholar 

  32. Anjard C, Su Y, Loomis WF (2011) The polyketide MPBD initiates the SDF-1 signaling cascade that coordinates terminal differentiation in Dictyostelium. Eukaryot Cell 10:956–963

    Article  PubMed  CAS  Google Scholar 

  33. Schaap P (2011) Evolution of developmental cyclic adenosine monophosphate signaling in the Dictyostelia from an amoebozoan stress response. Dev Growth Differ 53:452–462

    Article  PubMed  CAS  Google Scholar 

  34. Galardi-Castilla M, Garciandía A, Suarez T, Sastre L (2010) The Dictyostelium discoideum acaA gene is transcribed from alternative promoters during aggregation and multicellular development. PLoS One 5:e13286

    Article  PubMed  Google Scholar 

  35. Faure M, Franke J, Hall AL, Podgorski GJ, Kessin RH (1990) The cyclic nucleotide phosphodiesterase gene of Dictyostelium discoideum contains three promoters specific for growth, aggregation, and late development. Mol Cell Biol 10:1921–1930

    PubMed  CAS  Google Scholar 

  36. Louis JM, Saxe CL III, Kimmel AR (1993) Two transmembrane signaling mechanisms control expression of the cAMP receptor gene CAR1 during Dictyostelium development. Proc Natl Acad Sci U S A 90:5969–5973

    Article  PubMed  CAS  Google Scholar 

  37. Alvarez-Curto E, Rozen DE, Ritchie AV, Fouquet C, Baldauf SL, Schaap P (2005) Evolutionary origin of cAMP-based chemoattraction in the social amoebae. Proc Natl Acad Sci U S A 102:6385–6390

    Article  PubMed  CAS  Google Scholar 

  38. Insall R, Kuspa A, Lilly PJ, Shaulsky G, Levin LR, Loomis WF, Devreotes P (1994) CRAC, a cytosolic protein containing a pleckstrin homology domain, is required for receptor and G protein-mediated activation of adenylyl cyclase in Dictyostelium. J Cell Biol 126:1537–1545

    Article  PubMed  CAS  Google Scholar 

  39. Austin MB, Saito T, Bowman ME, Haydock S, Kato A, Moore BS, Kay RR, Noel JP (2006) Biosynthesis of Dictyostelium discoideum differentiation-inducing factor by a hybrid type I fatty acid-type III polyketide synthase. Nat Chem Biol 2:494–502

    Article  PubMed  CAS  Google Scholar 

  40. Neuman CS, Walsh CT, Kay RR (2010) A flavin-dependent halogenase catalyzes the chlorination step in the biosynthesis of Dictyostelium differentiation-inducing factor 1. Proc Natl Acad Sci U S A 107:5798–5803

    Article  Google Scholar 

  41. Velazquez F, Peak-Chew SY, Fernández IS, Neumann CS, Kay RR (2011) Identification of a eukaryotic reductive dechlorinase and characterization of its mechanism of action on its natural substrate. Chem Biol 18:1252–1260

    Article  PubMed  CAS  Google Scholar 

  42. Parikh A, Miranda ER, Katoh-Kurasawa M, Fuller D, Rot G, Zagar L, Curk T, Sucgang R, Chen R, Zupan B, Loomis WF, Kuspa A, Shaulsky G (2010) Conserved developmental transcriptomes in evolutionarily divergent species. Genome Biol 11:R35

    Article  PubMed  Google Scholar 

  43. Loomis WF, Shaulsky G (2011) Developmental changes in transcriptional profiles. Dev Growth Differ 53:567–575

    Article  PubMed  CAS  Google Scholar 

  44. Rot G, Parikh A, Curk T, Kuspa A, Shaulsky G, Zupan B (2009) dictyExpress: a Dictyostelium discoideum gene expression database with an explorative data analysis web-based interface. BMC Bioinformatics 10:265–272

    Article  PubMed  Google Scholar 

  45. Wang HY, Williams JG (2010) Synergy between two transcription factors directs gene expression in Dictyostelium tip-organiser cells. Int J Dev Biol 54:1301–1307

    Article  PubMed  CAS  Google Scholar 

  46. Huang E, Talukder S, Hughes T, Curk T, Zupan B, Shaulsky G, Katoh-Kurasawa M (2011) BzpF is a CREB-like transcription factor that regulates spore maturation and stability in Dictyostelium. Dev Biol 358:137–146

    Article  PubMed  CAS  Google Scholar 

  47. Olsen R, Loomis WF (2005) A collection of amino acid replacement matrices derived from clusters of orthologs. J Mol Evol 61:659–665

    Article  PubMed  CAS  Google Scholar 

  48. Song J, Xu Q, Olsen R, Loomis WF, Shaulsky G, Kuspa A, Sucgang R (2005) Comparing the Dictyostelium and Entamoeba genomes reveals an ancient split in the Conosa lineage. PLoS Comput Biol 1:e71

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William F. Loomis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Loomis, W.F. (2013). Comparative Genomics of the Dictyostelids. In: Eichinger, L., Rivero, F. (eds) Dictyostelium discoideum Protocols. Methods in Molecular Biology, vol 983. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-302-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-302-2_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-301-5

  • Online ISBN: 978-1-62703-302-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics