Skip to main content

Measuring Cheating, Fitness, and Segregation in Dictyostelium discoideum

  • Protocol
  • First Online:
Book cover Dictyostelium discoideum Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 983))

Abstract

Dictyostelium has become a model organism for the study of social evolution because of the stage in its life cycle where thousands of independent amoebae together form a fruiting body. Some individuals die to form a stalk that holds aloft the remaining cells for dispersal to new environments as spores. Different genotypes can aggregate together, creating opportunities for exploitation by cheaters that contribute a smaller proportion of cells to the stalk. Clustering of genotypes into separate fruiting bodies reduces the opportunities for cheating. Some genotypes achieve this by segregating after aggregation. Here we describe techniques for assaying cheating and segregation in D. discoideum. We cover how to grow and maintain cells, fluorescently label genotypes, design experiments for accuracy and precision, calculate fitness and segregation, and interpret the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kessin RH (2001) Dictyostelium: evolution, cell biology, and the development of multicellularity. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Benabentos R, Hirose S, Sucgang R, Curk T, Katoh M, Ostrowski EA, Strassmann JE, Queller DC, Zupon B, Shaulsky G, Kuspa A (2009) Polymorphic members of the lag gene family mediate kin discrimination in Dictyostelium. Curr Biol 19:567–572

    Article  PubMed  CAS  Google Scholar 

  3. Buttery NJ, Thompson CRL, Wolf JB (2010) Complex genotype interactions influence social fitness during the developmental phase of the social amoeba Dictyostelium discoideum. J Evol Biol 23:1664–1671

    Article  PubMed  CAS  Google Scholar 

  4. Fortunato A, Queller DC, Strassmann JE (2003) A linear dominance hierarchy among clones in chimeras of the social amoeba Dictyostelium discoideum. J Evol Biol 16:438–445

    Article  PubMed  CAS  Google Scholar 

  5. Foster KR, Fortunato A, Strassmann JE, Queller DC (2002) The costs and benefits of being a chimera. Proc Biol Sci 269:2357–2362

    Article  PubMed  Google Scholar 

  6. Foster KR, Shaulsky G, Strassmann JE, Queller DC, Thompson CRL (2004) Pleiotropy as a mechanism to stabilize cooperation. Nature 431:693–696

    Article  PubMed  CAS  Google Scholar 

  7. Gilbert OM, Foster KR, Mehdiabadi NJ, Strassmann JE, Queller DC (2007) High relatedness maintains multicellular cooperation in a social amoeba by controlling cheater mutants. Proc Natl Acad Sci U S A 104:8913–8917

    Article  PubMed  CAS  Google Scholar 

  8. Kuzdzal-Fick JJ, Fox SA, Strassmann JE, Queller DC (2011) High relatedness is necessary and sufficient to maintain multicellularity in Dictyostelium. Science 334:1548–1551

    Article  PubMed  CAS  Google Scholar 

  9. Parkinson K, Buttery NJ, Wolf JB, Thompson CRL (2011) A simple mechanism for complex social behavior. PLoS Biol 9:e1001039

    Article  PubMed  CAS  Google Scholar 

  10. Queller DC, Ponte E, Bozzaro S, Strassmann JE (2003) Single-gene greenbeard effects in the social amoeba Dictyostelium discoideum. Science 299:105–106

    Article  PubMed  CAS  Google Scholar 

  11. Strassmann JE, Zhu Y, Queller DC (2000) Altruism and social cheating in the social amoeba Dictyostelium discoideum. Nature 408:965–967

    Article  PubMed  CAS  Google Scholar 

  12. Ennis HL, Dao DN, Pukatzki SU, Kessin RH (2000) Dictyostelium amoebae lacking an F-box protein form spares rather than stalk in chimeras with wild type. Proc Natl Acad Sci U S A 97:3292–3297

    Article  PubMed  CAS  Google Scholar 

  13. Strassmann JE, Queller DC (2011) Evolution of cooperation and control of cheating in a social microbe. Proc Natl Acad Sci U S A 108:10855–10862

    Article  PubMed  CAS  Google Scholar 

  14. Buttery NJ, Rozen DE, Wolf JB, Thompson CRL (2009) Quantification of social behavior in D. discoideum reveals complex fixed and facultative strategies. Curr Biol 19:1373–1377

    Article  PubMed  CAS  Google Scholar 

  15. Santorelli LA, Thompson CRL, Villegas E, Svetz J, Dinh C, Parikh A, Sucgang R, Kuspa A, Strassmann JE, Queller DC, Shaulsky G (2008) Facultative cheater mutants reveal the genetic complexity of cooperation in social amoebae. Nature 451:1107–1110

    Article  PubMed  CAS  Google Scholar 

  16. Thompson CRL, Fu Q, Buhay C, Kay RR, Shaulsky G (2004) A bZIP/bRLZ transcription factor required for DIF signaling in Dictyostelium. Development 131:513–523

    Article  PubMed  CAS  Google Scholar 

  17. Gilbert OM, Strassmann JE, Queller DC (2012) High relatedness in a social amoebae: the role of kin discrimination. Proc Roy Soc Lond B, 279:2619–2624

    Google Scholar 

  18. Flowers JM, Li SI, Stathos A, Saxer G, Ostrowski EA, Queller DC, Strassmann JE, Purugganan MD (2010) Variation, sex, and social cooperation: molecular population genetics of the social amoeba Dictyostelium discoideum. PLoS Genet 6:e1001013

    Article  PubMed  Google Scholar 

  19. Hirose S, Benabentos R, Ho HI, Kuspa A, Shaulsky G (2011) Self-recognition in social amoebae is mediated by allelic pairs of tiger genes. Science 333:467–470

    Article  PubMed  CAS  Google Scholar 

  20. Bloomfield G, Tanaka Y, Skelton J, Ivens A, Kay RR (2008) Widespread duplications in the genomes of laboratory stocks of Dictyostelium discoideum. Genome Biol 9:R75

    Article  PubMed  Google Scholar 

  21. Rafols I, Amagai A, Maeda Y, MacWilliams HK, Sawada Y (2001) Cell type proportioning in Dictyostelium slugs: lack of regulation within a 2.5-fold tolerance range. Differentiation 67:107–116

    Article  PubMed  CAS  Google Scholar 

  22. Knecht DA, Shelden E (1995) 3-dimensional localization of wild-type and myson II mutant cells during morphenogenesis of Dictyostelium. Dev Biol 170:434–444

    Article  PubMed  CAS  Google Scholar 

  23. Pang KM, Lynes MA, Knecht DA (1999) Variables controlling the expression level of exogenous genes in Dictyostelium. Plasmid 41:187–197

    Article  PubMed  CAS  Google Scholar 

  24. Kerr B (2009) Theoretical and experimental approaches to the evolution of altruism and the levels of selection. In: Garland TJ, Rose MR (eds) Experimental evolution: concepts, methods, and applications of selection experiments. University of California Press, Berkeley, pp 585–630

    Google Scholar 

  25. Queller DC (1992) Does population viscosity promote kin selection? Trends Ecol Evol 7:322–324

    Article  PubMed  CAS  Google Scholar 

  26. Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275

    Article  Google Scholar 

  27. Grafen A (1985) A geometric view of relatedness. In: Ridley M, Dawkins R (eds) Oxford surveys in evolutionary biology. Oxford University Press, Oxford, pp 28–29

    Google Scholar 

  28. Mehdiabadi NJ, Jack CN, Farnham TT, Platt TG, Kalla SE, Shaulsky G, Queller DC, Strassmann JE (2006) Kin preference in a social microbe—given the right circumstances, even an amoeba chooses to be altruistic towards its relatives. Nature 442:881–882

    Article  PubMed  CAS  Google Scholar 

  29. Ostrowski EA, Katoh M, Shaulsky G, Queller DC, Strassmann JE (2008) Kin discrimination increases with genetic distance in a social amoeba. PLoS Biol 6:2376–2382

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Many thanks to Christopher Thompson, Gadi Shaulsky, Adam Kuspa, and everyone over the years who has helped to perfect these techniques from the Strassmann–Queller lab and beyond. This work was funded by NSF Grants DEB 1011513 and NSF DEB 0918931.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan E. Strassmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Buttery, N.J., Smith, J., Queller, D.C., Strassmann, J.E. (2013). Measuring Cheating, Fitness, and Segregation in Dictyostelium discoideum . In: Eichinger, L., Rivero, F. (eds) Dictyostelium discoideum Protocols. Methods in Molecular Biology, vol 983. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-302-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-302-2_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-301-5

  • Online ISBN: 978-1-62703-302-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics