Skip to main content

A Guide to Integrating Transcriptional Regulatory and Metabolic Networks Using PROM (Probabilistic Regulation of Metabolism)

  • Protocol
  • First Online:
Systems Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 985))

Abstract

The integration of transcriptional regulatory and metabolic networks is a crucial step in the process of predicting metabolic behaviors that emerge from either genetic or environmental changes. Here, we present a guide to PROM (probabilistic regulation of metabolism), an automated method for the construction and simulation of integrated metabolic and transcriptional regulatory networks that enables large-scale phenotypic predictions for a wide range of model organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lazebnik Y (2002) Can a biologist fix a radio? Or, what I learned while studying apoptosis. Cancer Cell 2(3):179–182

    Article  CAS  Google Scholar 

  2. Mendes P, Kell D (1998) Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14(10):869–883. doi:10.1093/bioinformatics/14.10.869

    Article  CAS  Google Scholar 

  3. Szallasi Z, Stelling J, Periwal V (2006) System modeling in cellular biology: from concepts to nuts and bolts, 1st edn. The MIT Press, Boston

    Google Scholar 

  4. Covert MW, Famili I, Palsson BO (2003) Identifying constraints that govern cell behavior: a key to converting conceptual to computational models in biology? Biotechnol Bioeng 84(7):763–772. doi:Doi10.1002/Bit.10849

    Article  CAS  Google Scholar 

  5. Price ND, Reed JL, Palsson BO (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2(11):886–897. doi:Doi10.1038/Nrmicro1023

    Article  CAS  Google Scholar 

  6. Kauffman KJ, Prakash P, Edwards JS (2003) Advances in flux balance analysis. Curr Opin Biotechnol 14(5):491–496. doi:Doi10.1016/j.copbio.2003.08.001

    Article  CAS  Google Scholar 

  7. Chandrasekaran S, Price ND (2010) Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 107(41):17845–17850. doi:Doi10.1073/pnas.1005139107

    Article  CAS  Google Scholar 

  8. Covert MW, Knight EM, Reed JL, Herrgard MJ, Palsson BO (2004) Integrating high-throughput and computational data elucidates bacterial networks. Nature 429(6987):92–96

    Article  CAS  Google Scholar 

  9. Herrgard MJ, Lee BS, Portnoy V, Palsson BO (2006) Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. Genome Res 16(5):627–635. doi:Doi10.1101/Gr.4083206

    Article  CAS  Google Scholar 

  10. Covert MW, Schilling CH, Palsson B (2001) Regulation of gene expression in flux balance models of metabolism. J Theor Biol 213(1):73–88. doi:Doi10.1006/jtbi.2001.2405

    Article  CAS  Google Scholar 

  11. Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5(4):264–276. doi:Doi10.1016/j.ymben.2003.09.002

    Article  CAS  Google Scholar 

  12. Young IT (1977) Proof without prejudice—Use of Kolmogorov-Smirnov test for analysis of histograms from flow systems and other sources. J Histochem Cytochem 25(7):935–941

    Article  CAS  Google Scholar 

  13. Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7(2):129–143. doi:Doi10.1038/Nrmicro1949

    CAS  Google Scholar 

  14. Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D (2007) How to infer gene networks from expression profiles. Mol Syst Biol 3:122. doi:Artn 78.doi: Doi 10.1038/Msb4100120

    Google Scholar 

  15. Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh CH, Minokawa T, Amore G, Hinman V, Arenas-Mena C, Otim O, Brown CT, Livi CB, Lee PY, Revilla R, Rust AG, Pan ZJ, Schilstra MJ, Clarke PJC, Arnone MI, Rowen L, Cameron RA, McClay DR, Hood L, Bolouri H (2002) A genomic regulatory network for development. Science 295(5560):1669–1678

    Article  CAS  Google Scholar 

  16. Schlitt T, Brazma A (2007) Current approaches to gene regulatory network modelling. BMC Bioinformatics 8. doi:Artn S9. doi: Doi 10.1186/1471-2105-8-S6-S9

    Google Scholar 

  17. Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31(1):64–68. doi:Doi10.1038/Ng881

    Article  CAS  Google Scholar 

  18. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young RA (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298(5594):799–804

    Article  CAS  Google Scholar 

  19. Chandrasekaran S, Ament SA, Eddy JA, Rodriguez-Zas SL, Schatz BR, Price ND, Robinson GE (2011) Behavior-specific changes in transcriptional modules lead to distinct and predictable neurogenomic states. Proc Natl Acad Sci U S A 108(44):18020–18025. doi:Doi10.1073/pnas.1114093108

    Article  CAS  Google Scholar 

  20. Shmulevich I, Dougherty ER, Kim S, Zhang W (2002) Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2):261–274

    Article  CAS  Google Scholar 

  21. Shlomi T, Cabili MN, Herrgard MJ, Palsson BO, Ruppin E (2008) Network-based prediction of human tissue-specific metabolism. Nat Biotechnol 26(9):1003–1010. doi:Doi10.1038/Nbt.1487

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge funding from the Grand Duchy of Luxembourg for ES and NDP, a NIH Howard Temin Pathway to Independence Award in Cancer Research, an NSF CAREER grant, and the Camille Dreyfus Teacher-Scholar Program for NDP, and a Howard Hughes Medical Institute Predoctoral Fellowship for SC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Simeonidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Simeonidis, E., Chandrasekaran, S., Price, N.D. (2013). A Guide to Integrating Transcriptional Regulatory and Metabolic Networks Using PROM (Probabilistic Regulation of Metabolism). In: Alper, H. (eds) Systems Metabolic Engineering. Methods in Molecular Biology, vol 985. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-299-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-299-5_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-298-8

  • Online ISBN: 978-1-62703-299-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics