Skip to main content

Resolving Cell Composition Through Simple Measurements, Genome-Scale Modeling, and a Genetic Algorithm

  • Protocol
  • First Online:
Book cover Systems Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 985))

Abstract

The biochemical composition of a cell is very complex and dynamic. It varies greatly among different organisms and environmental conditions. Inclusion of proper cell composition data is critical for accurate genome-scale metabolic flux modeling using flux balance analysis (FBA). However, determining cell composition experimentally is currently time-consuming and resource intensive. In this chapter, a method for predicting cell composition using a genome-scale model and “easy to measure” culture data (e.g., glucose uptake rate, and specific growth rate) is presented. The method makes use of a genetic algorithm for nonlinear optimization of a biomass equation (a mathematical description of cell composition). As a case study, the method was used to optimize a biomass equation for Escherichia coli MG1655 under multiple growth environments. The availability of experimentally determined 13C flux data allowed a direct comparison with FBA predicted fluxes through the TCA cycle. Results showed dramatic improvement upon optimization of the biomass equation. In a second case study, biomass equation optimization was also applied to Clostridium acetobutylicum, an organism with less available biochemical cell composition data in the literature. The method produced a biomass equation highly similar to one determined experimentally for the closely related Gram-positive Bacillus subtilis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edwards JS, Ibarra RU, Palsson BO (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19(2):125–130. doi:10.1038/84379

    Article  CAS  Google Scholar 

  2. Feist AM, Palsson BO (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat Biotechnol 26(6):659–667. doi:10.1038/nbt1401

    Article  CAS  Google Scholar 

  3. Milne CB, Kim PJ, Eddy JA, Price ND (2009) Accomplishments in genome-scale in silico modeling for industrial and medical biotechnology. Biotechnol J 4(12):1653–1670. doi:10.1002/biot.200900234

    Article  CAS  Google Scholar 

  4. Price ND, Reed JL, Palsson BO (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2(11):886–897. doi:10.1038/nrmicro1023

    Article  CAS  Google Scholar 

  5. Archer CT, Kim JF, Jeong H, Park JH, Vickers CE, Lee SY, Nielsen LK (2011) The genome sequence of E. coli W (ATCC 9637): comparative genome analysis and an improved genome-scale reconstruction of E. coli. BMC Genomics 12:9. doi:10.1186/1471-2164-12-9

    Article  CAS  Google Scholar 

  6. Chandrasekaran S, Price ND (2010) Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 107(41):17845–17850. doi:10.1073/pnas.1005139107

    Article  CAS  Google Scholar 

  7. Kim TY, Kim HU, Lee SY (2010) Metabolite-centric approaches for the discovery of antibacterials using genome-scale metabolic networks. Metab Eng 12(2):105–111. doi:10.1016/j.ymben.2009.05.004

    Article  CAS  Google Scholar 

  8. Burgard AP, Pharkya P, Maranas CD (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84(6):647–657. doi:10.1002/bit.10803

    Article  CAS  Google Scholar 

  9. Fong SS, Burgard AP, Herring CD, Knight EM, Blattner FR, Maranas CD, Palsson BO (2005) In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol Bioeng 91(5):643–648. doi:10.1002/bit.20542

    Article  CAS  Google Scholar 

  10. Ranganathan S, Suthers PF, Maranas CD (2010) OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput Biol 6(4):e1000744. doi:10.1371/journal.pcbi.1000744

    Article  Google Scholar 

  11. Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28(3):245–248. doi:10.1038/nbt.1614

    Article  CAS  Google Scholar 

  12. Reed JL, Palsson BO (2004) Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states. Genome Res 14(9):1797–1805. doi:10.1101/gr.2546004

    Article  CAS  Google Scholar 

  13. Senger RS (2010) Biofuel production improvement with genome-scale models: the role of cell composition. Biotechnol J 5(7):671–685. doi:10.1002/biot.201000007

    Article  CAS  Google Scholar 

  14. Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7(2):129–143. doi:10.1038/nrmicro1949

    CAS  Google Scholar 

  15. Heinemann M, Kummel A, Ruinatscha R, Panke S (2005) In silico genome-scale reconstruction and validation of the Staphylococcus aureus metabolic network. Biotechnol Bioeng 92(7):850–864. doi:10.1002/bit.20663

    Article  CAS  Google Scholar 

  16. Senger RS, Papoutsakis ET (2008) Genome-scale model for Clostridium acetobutylicum: Part I. Metabolic network resolution and analysis. Biotechnol Bioeng 101(5):1036–1052. doi:10.1002/bit.22010

    Article  CAS  Google Scholar 

  17. Pramanik J, Keasling JD (1997) Stoichiometric model of Escherichia coli metabolism: incorporation of growth-rate dependent biomass composition and mechanistic energy requirements. Biotechnol Bioeng 56(4):398–421. doi:10.1002/(SICI)1097-0290(19971120)56:4<398::AID-BIT6>3.0.CO;2-J

    Article  CAS  Google Scholar 

  18. Pramanik J, Keasling JD (1998) Effect of Escherichia coli biomass composition on central metabolic fluxes predicted by a stoichiometric model. Biotechnol Bioeng 60(2):230–238

    Article  CAS  Google Scholar 

  19. Senger RS, Papoutsakis ET (2008) Genome-scale model for Clostridium acetobutylicum: Part II. Development of specific proton flux states and numerically determined sub-systems. Biotechnol Bioeng 101(5):1053–1071. doi:10.1002/bit.22009

    Article  CAS  Google Scholar 

  20. Edwards JS, Palsson BO (1999) Systems properties of the Haemophilus influenzae Rd metabolic genotype. J Biol Chem 274(25):17410–17416

    Article  CAS  Google Scholar 

  21. Edwards JS, Palsson BO (2000) The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci U S A 97(10):5528–5533

    Article  CAS  Google Scholar 

  22. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novere N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4):524–531

    Article  CAS  Google Scholar 

  23. Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 28(9):977–982. doi:10.1038/nbt.1672

    Article  CAS  Google Scholar 

  24. Kumar A, Suthers PF, Maranas CD (2012) MetRxn: a knowledgebase of metabolites and reactions spanning metabolic models and databases. BMC Bioinformatics 13(1):6. doi:10.1186/1471-2105-13-6

    Article  Google Scholar 

  25. Systems Biology Research Group http://gcrg.ucsd.edu/InSilicoOrganisms/OtherOrganisms. Accessed on 4/1/2012

  26. Reed JL, Vo TD, Schilling CH, Palsson BO (2003) An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4(9):R54. doi:10.1186/gb-2003-4-9-r54

    Article  Google Scholar 

  27. Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, Kang J, Hyduke DR, Palsson BO (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6(9):1290–1307. doi:10.1038/nprot.2011.308

    Article  CAS  Google Scholar 

  28. GLPK http://www.gnu.org/software/glpk/

  29. Herrera F, Lozano M, Verdegay JL (1998) Tackling real-coded genetic algorithms: operators and tools for behavioural analysis. Artif Intell Rev 12(4):265–319

    Article  Google Scholar 

  30. Eshelmann LJ, Schaffer JD (1993) Real-coded genetic algorithms and interval-schemata. In: Whitely LD (ed) Foundations of genetic algorithms 2. Morgan Kaufmann, San Mateo, pp 187–202

    Google Scholar 

  31. Michalewicz Z (1992) Genetic algorithms + data structures = evolution programs. Springer-Verlag, New York

    Google Scholar 

  32. Chen X, Alonso AP, Allen DK, Reed JL, Shachar-Hill Y (2011) Synergy between (13)C-metabolic flux analysis and flux balance analysis for understanding metabolic adaptation to anaerobiosis in E. coli. Metab Eng 13(1):38–48. doi:10.1016/j.ymben.2010.11.004

    Article  Google Scholar 

  33. Walsh K, Koshland DE Jr (1985) Branch point control by the phosphorylation state of isocitrate dehydrogenase. A quantitative examination of fluxes during a regulatory transition. J Biol Chem 260(14):8430–8437

    CAS  Google Scholar 

  34. Meyer CL, Papoutsakis ET (1989) Continuous and biomass recycle fermentations of Clostridium acetobutylicum.2. Novel patterns in energetics and product-formation kinetics. Bioprocess Eng 4(2):49–55

    Article  Google Scholar 

  35. Oh YK, Palsson BO, Park SM, Schilling CH, Mahadevan R (2007) Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-throughput phenotyping and gene essentiality data. J Biol Chem 282(39):28791–28799. doi:10.1074/jbc.M703759200

    Article  CAS  Google Scholar 

  36. The openCOBRA Project http://opencobra.sourceforge.net/openCOBRA/Welcome.html. Accessed on 4/1/2012

  37. LibSBML http://sourceforge.net/projects/sbml/files/libsbml/5.1.0-b0/. Accessed on 4/1/2012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan S. Senger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Senger, R.S., Nazem-Bokaee, H. (2013). Resolving Cell Composition Through Simple Measurements, Genome-Scale Modeling, and a Genetic Algorithm. In: Alper, H. (eds) Systems Metabolic Engineering. Methods in Molecular Biology, vol 985. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-299-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-299-5_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-298-8

  • Online ISBN: 978-1-62703-299-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics