Skip to main content

Discovery of Posttranscriptional Regulatory RNAs Using Next Generation Sequencing Technologies

  • Protocol
  • First Online:
Systems Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 985))

Abstract

Next generation sequencing (NGS) has revolutionized the way by which we engineer metabolism by radically altering the path to genome-wide inquiries. This is due to the fact that NGS approaches offer several powerful advantages over traditional methods that include the ability to fully sequence hundreds to thousands of genes in a single experiment and simultaneously detect homozygous and heterozygous deletions, alterations in gene copy number, insertions, translocations, and exome-wide substitutions that include “hot-spot mutations.” This chapter describes the use of these technologies as a sequencing technique for transcriptome analysis and discovery of regulatory RNA elements in the context of three main platforms: Illumina HiSeq, 454 pyrosequencing, and SOLiD sequencing. Specifically, this chapter focuses on the use of Illumina HiSeq, since it is the most widely used platform for RNA discovery and transcriptome analysis. Regulatory RNAs have now been found in all branches of life. In bacteria, noncoding small RNAs (sRNAs) are involved in highly sophisticated regulatory circuits that include quorum sensing, carbon metabolism, stress responses, and virulence (Gorke and Vogel, Gene Dev 22:2914–2925, 2008; Gottesman, Trends Genet 21:399–404, 2005; Romby et al., Curr Opin Microbiol 9:229–236, 2006). Further characterization of the underlying regulation of gene expression remains poorly understood given that it is estimated that over 60% of all predicted genes remain hypothetical and the 5′ and 3′ untranslated regions are unknown for more than 90% of the genes (Siegel et al., Trends Parasitol 27:434–441, 2011). Importantly, manipulation of the posttranscriptional regulation that occurs at the level of RNA stability and export, trans-splicing, polyadenylation, protein translation, and protein stability via untranslated regions (Clayton, EMBO J 21:1881–1888, 2002; Haile and Papadopoulou, Curr Opin Microbiol 10:569–577, 2007) could be highly beneficial to metabolic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gorke B, Vogel J (2008) Noncoding RNA control the making and breaking of sugars. Genes Dev 22:2914–2925

    Article  Google Scholar 

  2. Gottesman S (2005) Micros for microbes: non-coding regulatory RNAs in bacteria. Trends Genet 21:399–404

    Article  CAS  Google Scholar 

  3. Romby P, Vandenesch F, Wagner EGH (2006) The role of RNAs in the regulation of virulence-gene expression. Curr Opin Microbiol 9:229–236

    Article  CAS  Google Scholar 

  4. Siegel G et al (2011) Gene expression in Trypansoma brucei: lessons from high throughput RNA sequencing. Trends Parasitol 27:434–441

    Article  CAS  Google Scholar 

  5. Clayton CE (2002) Life without transcriptional control? From fly to man and back again. EMBO J 21:1881–1888

    Article  CAS  Google Scholar 

  6. Haile S, Papadopoulou B (2007) Developmental regulation of gene expression in trypanosomatid parasitic protozoa. Curr Opin Microbiol 10:569–577

    Article  CAS  Google Scholar 

  7. Metzker ML (2010) Sequencing technologies—The next generation. Nat Rev Genet 11:31–46

    Article  CAS  Google Scholar 

  8. Rusk N (2011) Torrents of sequence. Nat Methods 8:44

    Google Scholar 

  9. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–5467

    Article  CAS  Google Scholar 

  10. Franca LT, Carrilho E, Kist TB (2002) A review of DNA sequencing techniques. Q Rev Biophys 35(2):169–200

    Article  CAS  Google Scholar 

  11. Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402

    Article  CAS  Google Scholar 

  12. Margulies E et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    CAS  Google Scholar 

  13. Kuchenbauer M et al (2008) In-depth characterization of the microRNA transcriptome in a leukemia progression model. Genome Res 18:1787–1797

    Article  CAS  Google Scholar 

  14. Schweiger MR, Kerick M, Timmermann B et al (2011) The power of NGS technologies to delineate the genome organization in cancer: from mutations to structural variations and epigenetic alterations. Cancer Metastasis Rev 30:199–2010

    Article  CAS  Google Scholar 

  15. Tawfik DS, Griffiths AD (1998) Man-made cell-like compartments for molecular evolution. Nat Biotechnol 16:652–656

    Article  CAS  Google Scholar 

  16. Slamon DJ, Leyland-Jones B, Shak S et al (2001) Use of chemotherapy plus monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792

    Article  CAS  Google Scholar 

  17. Shendure J, Porreca GJ, Reppas NB et al (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309:1728–1732

    Article  CAS  Google Scholar 

  18. Martin JA, Wang Z (2011) Next-generation transcriptome assembly. Nat Rev Genet 12:671–682

    Article  CAS  Google Scholar 

  19. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  Google Scholar 

  20. Lu C, Meyers BC, Green PJ (2007) Construction of small RNA cDNA libraries for deep sequencing. Methods 43:110–117

    Article  Google Scholar 

  21. Noonan H et al (2006) Sequencing and analysis of Neanderthal genomic DNA. Science 314:1113–1118

    Article  CAS  Google Scholar 

  22. Nakamura S, Nakaya T, Iida T (2011) Metagenomic analysis of bacterial infections by means of high-throughput DNA sequencing. Exp Biol Med 236:968–971

    Article  CAS  Google Scholar 

  23. Ren R et al (2000) Genome-wide profiles of STAT1 of DNA binding proteins. Science 290:2306–2309

    Article  CAS  Google Scholar 

  24. Niedringhaus M et al (2011) Landscape of next-generation sequencing technologies. Anal Chem 83:4327–4341

    Article  CAS  Google Scholar 

  25. Lister O’M et al (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536

    Article  CAS  Google Scholar 

  26. Cloonan F et al (2008) Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods 5:613–619

    Article  CAS  Google Scholar 

  27. Lin Q et al (1999) Whole-genome shotgun optical mapping of Deinococcus radiodurans. Science 285(5433):1558–1562

    Article  CAS  Google Scholar 

  28. Li H et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  Google Scholar 

  29. Linsen SE, de Wit E et al (2009) Limitations and possibilities of small RNA digital gene expression profiling. Nat Methods 6:474–476

    Article  CAS  Google Scholar 

  30. Dressman Y et al (2003) Transforming single DNA molecules into fluorescent magnetic particle for detection and enumeration of genetic variations. Proc Natl Acad Sci USA 100:8817–8822

    Article  CAS  Google Scholar 

  31. Feurco R et al (2006) BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies. Nucleic Acids Res 34:e22

    Article  Google Scholar 

  32. McCormick KP, Willmann MR, Meyers BC (2011) Experimental design, preprocessing, normalization and differential expression analysis of small RNA sequencing experiments. Silence J 2:2

    Article  CAS  Google Scholar 

  33. Liu L et al (2009) Experimental discovery of sRNAs in Vibrio cholera by direct cloning, 5S/tRNA depletion and parallel sequencing. Nucleic Acids Res 37:e46

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by a Defense Threat Reducing Agency (DTRA) Young Investigator Award to LMC and by support from the Welch Foundation to LMC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydia M. Contreras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gelderman, G., Contreras, L.M. (2013). Discovery of Posttranscriptional Regulatory RNAs Using Next Generation Sequencing Technologies. In: Alper, H. (eds) Systems Metabolic Engineering. Methods in Molecular Biology, vol 985. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-299-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-299-5_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-298-8

  • Online ISBN: 978-1-62703-299-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics