Skip to main content

Identification of Mutations in Evolved Bacterial Genomes

  • Protocol
  • First Online:
Systems Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 985))

Abstract

Directed laboratory evolution is a common technique to obtain an evolved bacteria strain with a desired phenotype. This technique is especially useful as a supplement to rational engineering for complex phenotypes such as increased biocatalyst tolerance to toxic compounds. However, reverse engineering efforts are required in order to identify the mutations that occurred, including single nucleotide polymorphisms (SNPs), insertions/deletions (indels), duplications, and rearrangements. In this protocol, we describe the steps to (1) obtain and sequence the genomic DNA, (2) process and analyze the genomic DNA sequence data, and (3) verify the mutations by Sanger resequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ingram LO, Buttke TM (1984) Effects of alcohols on micro-organisms. Adv Microb Physiol 25:253–300

    Article  CAS  Google Scholar 

  2. Trinh CT, Huffer S, Clark ME, Blanch HW, Clark DS (2010) Elucidating mechanisms of solvent toxicity in ethanologenic Escherichia coli. Biotechnol Bioeng 106(5):721–730

    Article  CAS  Google Scholar 

  3. Duro AF, Serrano R (1981) Inhibition of succinate production during yeast fermentation by de-energization of the plasma membrane. Current Microbiology 6:111–113

    Article  CAS  Google Scholar 

  4. Smith EH, Janknecht R, Maher LJ 3rd (2007) Succinate inhibition of alpha-ketoglutarate-dependent enzymes in a yeast model of paraganglioma. Hum Mol Genet 16(24):3136–3148

    Article  CAS  Google Scholar 

  5. Winkler J, Kao KC (2011) Transcriptional analysis of Lactobacillus brevis to N-butanol and ferulic acid stress responses. PLoS One 6(8):e21438

    Article  CAS  Google Scholar 

  6. Schwarz KM, Kuit W, Grimmler C, Ehrenreich A, Kengen SW (2012) A transcriptional study of acidogenic chemostat cells of Clostridium acetobutylicum—Cellular behavior in adaptation to n-butanol. J Biotechnol 161(3):366–77

    Article  CAS  Google Scholar 

  7. Jarboe LR, Grabar TB, Yomano LP, Shanmugan KT, Ingram LO (2007) Development of ethanologenic bacteria. Adv Biochem Eng Biotechnol 108:237–261

    CAS  Google Scholar 

  8. Li C, Wang Q, Zhao ZK (2008) Acid in ionic liquid: an efficient system for hydrolysis of lignocellulose. Green Chemistry 10:177–182

    Article  CAS  Google Scholar 

  9. Jorgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioproducts & Biorefining-Biofpr 1:119–134

    Article  Google Scholar 

  10. Zaldivar J, Ingram LO (1999) Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol Bioeng 66(4):203–210

    Article  CAS  Google Scholar 

  11. Zaldivar J, Martinez A, Ingram LO (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 65(1):24–33

    Article  CAS  Google Scholar 

  12. Miller EN, Jarboe LR, Turner PC, Pharkya P, Yomano LP, York SW, Ingram LO (2009) Furfural inhibits growth by limiting sulfur assimilation in ethanologenic Escherichia coli strain LY180. Appl Environ Microbiol 75(19):6132–6141

    Article  CAS  Google Scholar 

  13. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25

    Article  Google Scholar 

  14. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760

    Article  CAS  Google Scholar 

  15. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Durbin R (2009) The sequence alignment/Map format and SAMtools. Bioinformatics 25(16):2078–2079

    Article  Google Scholar 

  16. Metzker ML (2010) Sequencing technologies—The next generation. Nat Rev Genet 11(1):31–46

    Article  CAS  Google Scholar 

  17. Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8(3):195–202

    CAS  Google Scholar 

  18. Miller EN, Jarboe LR, Yomano LP, York SW, Shanmugam KT, Ingram LO (2009) Silencing of NADPH-dependent oxidoreductase genes (yqhD and dkgA) in furfural-resistant ethanologenic Escherichia coli. Appl Environ Microbiol 75(13):4315–4323

    Article  CAS  Google Scholar 

  19. Jarboe LR (2011) YqhD: a broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals. Appl Microbiol Biotechnol 89(2):249–257

    Article  CAS  Google Scholar 

  20. Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M, Taylor J (2010) Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol Chapter 19(Unit 19.10):1–21

    Google Scholar 

  21. Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Nekrutenko A (2005) Galaxy: a platform for interactive large-scale genome analysis. Genome Res 15(10):1451–1455

    Article  CAS  Google Scholar 

  22. Goecks J, Nekrutenko A, Taylor J (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11(8):R86

    Article  Google Scholar 

  23. Andrews S (2012) FASTQC: a quality control tool for high throughput sequence data. Computer program distributed by the author, website http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/

  24. Gordon A (2012) FASTX-Toolkit. Computer program distributed by the author, retrieved from http://hannonlab.cshl.edu/fastx_toolkit/index.html

  25. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19(6):1117–1123

    Article  CAS  Google Scholar 

  26. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829

    Article  CAS  Google Scholar 

  27. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421

    Article  Google Scholar 

  28. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  Google Scholar 

  29. Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8(3):186–194

    CAS  Google Scholar 

  30. Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8(3):175–185

    CAS  Google Scholar 

Download references

Acknowledgement

We would like to thank Michael Baker at the DNA facility of the Iowa State University Office of Biotechnology for his input on next-generation sequencing using the Illumina platform. We also thank Emily Rickenbach, an undergraduate student who helped automate the method for picking primers for verifying mutations. Funding was provided for this work by the NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), NSF award number EEC-0813570 and NSF Energy for Sustainability award number CBET-1133319.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Jarboe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Royce, L., Boggess, E., Jin, T., Dickerson, J., Jarboe, L. (2013). Identification of Mutations in Evolved Bacterial Genomes. In: Alper, H. (eds) Systems Metabolic Engineering. Methods in Molecular Biology, vol 985. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-299-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-299-5_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-298-8

  • Online ISBN: 978-1-62703-299-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics