Advertisement

Capillary Electrophoresis–Mass Spectrometry of Carbohydrates

  • Joseph Zaia
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 984)

Abstract

The development of methods for capillary electrophoresis (CE) with on-line mass spectrometric detection (CE/MS) is driven by the need for accurate, robust, and sensitive glycomics analysis for basic biomedicine, biomarker discovery, and analysis of recombinant protein therapeutics. One important capability is to profile glycan mixtures with respect to the patterns of substituents including sialic acids, acetate, sulfate, phosphate, and other groups. There is additional need for an MS-compatible separation system capable of resolving carbohydrate isomers. This chapter summarizes applications of CS/MS to analysis of carbohydrates, glycoproteins, and glycopeptides that have appeared since 2008. Readers are referred to recent comprehensive reviews covering earlier publications.

Key words

Capillary electrophoresis Mass spectrometry 

Notes

Acknowledgment

The author’s effort is supported by US National Institute of Health grants P41RR10888 and R01HL098950.

References

  1. 1.
    Cummings RD (2009) The repertoire of glycan determinants in the human glycome. Mol Biosyst 5:1087–1104PubMedCrossRefGoogle Scholar
  2. 2.
    Zaia J (2004) Mass spectrometry of oligosaccharides. Mass Spectrom Reviews 23:161–227CrossRefGoogle Scholar
  3. 3.
    Zaia J (2010) Mass spectrometry and glycomics. OMICS 14:401–418PubMedCrossRefGoogle Scholar
  4. 4.
    Bielik AM, Zaia J (2010) Historical overview of glycoanalysis. Methods Mol Biol 600:9–30PubMedCrossRefGoogle Scholar
  5. 5.
    Zaia J (2008) Mass spectrometry and the emerging field of glycomics. Chem Biol 15:881–892PubMedCrossRefGoogle Scholar
  6. 6.
    Zaia J (2009) On-line separations combined with MS for analysis of glycosaminoglycans. Mass Spectrom Rev 28:254–272PubMedCrossRefGoogle Scholar
  7. 7.
    Wuhrer M, de Boer AR, Deelder AM (2009) Structural glycomics using hydrophilic interaction chromatography (HILIC) with mass spectrometry. Mass Spectrom Rev 28:192–206PubMedCrossRefGoogle Scholar
  8. 8.
    Mechref Y, Novotny MV (2009) Editorial: glycomics through hyphenated techniques. Mass Spectrom Rev 28:191–191PubMedCrossRefGoogle Scholar
  9. 9.
    Mechref Y, Novotny MV (2006) Miniaturized separation techniques in glycomic investigations. J Chromatogr B Analyt Technol Biomed Life Sci 841:65–78PubMedCrossRefGoogle Scholar
  10. 10.
    Wuhrer M, Deelder AM, Hokke CH (2005) Protein glycosylation analysis by liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 825:124–133PubMedCrossRefGoogle Scholar
  11. 11.
    Volpi N, Maccari F, Linhardt RJ (2008) Capillary electrophoresis of complex natural polysaccharides. Electrophoresis 29:3095–3106PubMedCrossRefGoogle Scholar
  12. 12.
    Mechref Y, Novotny MV (2009) Glycomic analysis by capillary electrophoresis-mass spectrometry. Mass Spectrom Rev 28:207–222PubMedCrossRefGoogle Scholar
  13. 13.
    Campa C, Coslovi A, Flamigni A, Rossi M (2006) Overview on advances in capillary electrophoresis-mass spectrometry of carbohydrates: a tabulated review. Electrophoresis 27:2027–2050PubMedCrossRefGoogle Scholar
  14. 14.
    Amon S, Zamfir AD, Rizzi A (2008) Glycosylation analysis of glycoproteins and proteoglycans using capillary electrophoresis-mass spectrometry strategies. Electrophoresis 29:2485–2507PubMedCrossRefGoogle Scholar
  15. 15.
    Gennaro LA, Salas-Solano O (2008) On-line CE-LIF-MS technology for the direct characterization of N-linked glycans from therapeutic antibodies. Anal Chem 80:3838–3845PubMedCrossRefGoogle Scholar
  16. 16.
    Maxwell EJ, Ratnayake C, Jayo R, Zhong X, Chen DD (2011) A promising capillary electrophoresis-electrospray ionization-mass spectrometry method for carbohydrate analysis. Electrophoresis 32:2161–2166PubMedCrossRefGoogle Scholar
  17. 17.
    Thakur D, Rejtar T, Karger BL, Washburn NJ, Bosques CJ, Gunay NS, Shriver Z, Venkataraman G (2009) Profiling the glycoforms of the intact alpha subunit of recombinant human chorionic gonadotropin by high-resolution capillary electrophoresis-mass spectrometry. Anal Chem 81:8900–8907PubMedCrossRefGoogle Scholar
  18. 18.
    Kojima H, Inagaki M, Tomita T, Watanabe T, Uchida S (2009) Separation and characterization of lipopolysaccharide related compounds by HPLC/post-column fluorescence derivatization (HPLC/FLD) and capillary zone electrophoresis/mass spectrometry (CZE/MS). J Chromatogr B Analyt Technol Biomed Life Sci 877:1537–1542PubMedCrossRefGoogle Scholar
  19. 19.
    Anumula KR (2006) Advances in fluorescence derivatization methods for high-performance liquid chromatographic analysis of glycoprotein carbohydrates. Anal Biochem 350:1–23PubMedCrossRefGoogle Scholar
  20. 20.
    Nakano M, Higo D, Arai E, Nakagawa T, Kakehi K, Taniguchi N, Kondo A (2009) Capillary electrophoresis-electrospray ionization mass spectrometry for rapid and sensitive N-glycan analysis of glycoproteins as 9-fluorenylmethyl derivatives. Glycobiology 19:135–143PubMedCrossRefGoogle Scholar
  21. 21.
    Hase S (1994) High-performance liquid chromatography of pyridylaminated saccharides. Methods Enzymol 230:225–237PubMedCrossRefGoogle Scholar
  22. 22.
    Lauc G, Essafi A, Huffman JE, Hayward C, Knezevic A, Kattla JJ, Polasek O, Gornik O, Vitart V, Abrahams JL, Pucic M, Novokmet M, Redzic I, Campbell S, Wild SH, Borovecki F, Wang W, Kolcic I, Zgaga L, Gyllensten U, Wilson JF, Wright AF, Hastie ND, Campbell H, Rudd PM, Rudan I (2010) Genomics meets glycomics-the first GWAS study of human N-Glycome identifies HNF1alpha as a master regulator of plasma protein fucosylation. PLoS Genet 6:e1001256PubMedCrossRefGoogle Scholar
  23. 23.
    Knezevic A, Polasek O, Gornik O, Rudan I, Campbell H, Hayward C, Wright A, Kolcic I, O’Donoghue N, Bones J, Rudd PM, Lauc G (2009) Variability, heritability and environmental determinants of human plasma N-glycome. J Proteome Res 8:694–701PubMedCrossRefGoogle Scholar
  24. 24.
    Ghaderi D, Taylor RE, Padler-Karavani V, Diaz S, Varki A (2010) Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins. Nat Biotech 28:863–867CrossRefGoogle Scholar
  25. 25.
    Ortner K, Buchberger W (2008) Determination of sialic acids released from glycoproteins using capillary zone electrophoresis/electrospray ionization mass spectrometry. Electrophoresis 29:2233–2237PubMedCrossRefGoogle Scholar
  26. 26.
    Gimenez E, Ramos-Hernan R, Benavente F, Barbosa J, Sanz-Nebot V (2011) Capillary electrophoresis time-of-flight mass spectrometry for a confident elucidation of a glycopeptide map of recombinant human erythropoietin. Rapid Commun Mass Spectrom 25:2307–2316PubMedCrossRefGoogle Scholar
  27. 27.
    Imami K, Ishihama Y, Terabe S (2008) On-line selective enrichment and ion-pair reaction for structural determination of sulfated glycopeptides by capillary electrophoresis-mass spectrometry. J Chromatogr A 1194:237–242PubMedCrossRefGoogle Scholar
  28. 28.
    Fournier T, Medjoubi NN, Porquet D (2000) Alpha-1-acid glycoprotein. Biochim Biophys Acta 1482:157–171PubMedCrossRefGoogle Scholar
  29. 29.
    Ongay S, Neususs C (2010) Isoform differentiation of intact AGP from human serum by capillary electrophoresis-mass spectrometry. Anal Bioanal Chem 398:845–855PubMedCrossRefGoogle Scholar
  30. 30.
    Neususs C, Pelzing M (2009) Capillary zone electrophoresis-mass spectrometry for the characterization of isoforms of intact glycoproteins. Methods Mol Biol 492:201–213PubMedCrossRefGoogle Scholar
  31. 31.
    Haselberg R, Brinks V, Hawe A, de Jong GJ, Somsen GW (2011) Capillary electrophoresis-mass spectrometry using noncovalently coated capillaries for the analysis of biopharmaceuticals. Anal Bioanal Chem 400:295–303PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Department of Biochemistry, Center for Biomedical Mass SpectrometryBoston University Medial CampusBostonUSA

Personalised recommendations