Capillary Electrophoresis-Mass Spectrometry for Peptide Analysis: Target-Based Approaches and Proteomics/Peptidomics Strategies

  • Carolina Simó
  • Alejandro Cifuentes
  • Václav Kašička
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 984)

Abstract

In this chapter, the potential of capillary electrophoresis-mass spectrometry (CE-MS) for peptide analysis is demonstrated by the presentation of two different strategies typically followed in analysis of these biomolecules by CE-MS. The first one is a target-based approach and it is used to detect a toxic oligopeptide in a complex matrix. Namely, CE-MS using an ion trap MS analyzer is applied to detect and quantify γ-glutamyl-S-ethenyl-cysteine (GEC) bioactive dipeptide in a legume plant. The second one is a shotgun-like methodology used for proteomic analysis. Particularly, CE-MS using a time-of-flight MS analyzer is employed to investigate the substantial equivalence between a genetically modified (GM) variety of soybean and its conventional isogenic counterpart. These generic methods have broad applications for the analysis of peptides in a large variety of matrices, including applications in the area of proteomics and peptidomics.

Key words

Peptides Foodomics Peptidomics Proteomics Target analysis CE CE-MS 

Notes

Acknowledgments

This work was supported by AGL2008-05108-C03-01 (Ministerio de Educacion y Ciencia, Spain) and CSD2007-00063 FUN-C-FOOD projects (Programa CONSOLIDER, Ministerio de Educacion y Ciencia, Spain); by the Czech Science Foundation, grant no. 203/08/1428; and by the Academy of Sciences of the Czech Republic (ASCR), Research Project AV0Z40550506. Authors also thank 2008CZ0019 bilateral project (ASCR-CSIC) for the support.

References

  1. 1.
    Tomer KB (2001) Separations combined with mass spectrometry. Chem Rev 101:297–328PubMedCrossRefGoogle Scholar
  2. 2.
    Klampfl CW, Buchberger W (2007) Coupling of capillary electroseparation techniques with mass spectrometric detection. Anal Bioanal Chem 388(3):533–536PubMedCrossRefGoogle Scholar
  3. 3.
    Klampfl CW (2009) CE with MS detection: a rapidly developing hyphenated technique. Electrophoresis 30:S83–S91PubMedCrossRefGoogle Scholar
  4. 4.
    Hommerson P, Khan AM, de Jong GJ, Somsen GW (2011) Ionization techniques in capillary electrophoresis-mass spectrometry: principles, design, and application. Mass Spectrom Rev 30:1096–1120PubMedCrossRefGoogle Scholar
  5. 5.
    Olivares JA, Nguyen NT, Yonker CR, Smith RD (1987) Online mass-spectrometric detection for capillary zone electrophoresis. Anal Chem 59:1230–1232CrossRefGoogle Scholar
  6. 6.
    Brocke A, Nicholson G, Bayer E (2001) Recent advances in capillary electrophoresis/electrospray-mass spectrometry. Electrophoresis 22:1251–1266CrossRefGoogle Scholar
  7. 7.
    Schmitt-Kopplin P, Frommberger M (2003) Capillary electrophoresis-mass spectrometry: 15 years of developments and applications. Electrophoresis 24:3837–3867PubMedCrossRefGoogle Scholar
  8. 8.
    Simó C, Cifuentes A (2003) Capillary electrophoresis-mass spectrometry of peptide from enzymatic protein hydrolysis. Simulation and optimization. Electrophoresis 24:834–842PubMedCrossRefGoogle Scholar
  9. 9.
    Stutz H (2005) Advances in the analysis of proteins and peptides by capillary ­electrophoresis with matrix-assisted laser ­desorption/ionization and electrospray-mass spectrometry detection. Electrophoresis 26:1254–1290PubMedCrossRefGoogle Scholar
  10. 10.
    Scriba GKE, Psurek A (2008) Separation of peptides by capillary electrophoresis. In: Schmitt-Kopplin P (ed) Capillary electrophoresis, Capillary electrophoresis, methods and protocols. Humana Press Inc., Totowa, NJ, pp 483–506CrossRefGoogle Scholar
  11. 11.
    Herrero M, Ibáñez E, Cifuentes A (2008) Capillary electrophoresis-mass spectrometry for peptide analysis and peptidomics. Electrophoresis 29:2148–2160PubMedCrossRefGoogle Scholar
  12. 12.
    Metzger J, Schanstra J, Mischak H (2009) Capillary electrophoresis-mass spectrometry in urinary proteome analysis: current applications and future developments. Anal Bioanal Chem 393:1431–1442PubMedCrossRefGoogle Scholar
  13. 13.
    Neusüss C, Pelzing M (2009) Capillary zone electrophoresis-mass spectrometry for the characterization of isoforms of intact ­glycoproteins. Methods Mol Biol 492:201–213PubMedCrossRefGoogle Scholar
  14. 14.
    Simó C, Dominguez-Vega E, Marina ML, Garcia MC, Dinelli G, Cifuentes A (2010) CE-TOF MS analysis of complex protein hydrolyzates from genetically modified soybeans—A tool for foodomics. Electrophoresis 31:1175–1183PubMedCrossRefGoogle Scholar
  15. 15.
    Kašička V (2010) Recent advances in CE and CEC of peptides (2007–2009). Electrophoresis 31:122–146PubMedCrossRefGoogle Scholar
  16. 16.
    Borges-Alvarez M, Benavente F, Gimenez E, Barbosa J, Sanz-Nebot V (2010) Assessment of capillary electrophoresis TOF MS for a confident identification of peptides. J Sep Sci 33:2489–2498PubMedCrossRefGoogle Scholar
  17. 17.
    Haselberg R, Brinks V, Hawe A, de Jong GJ, Somsen GW (2011) Capillary electrophoresis-mass spectrometry using noncovalently coated capillaries for the analysis of biopharmaceuticals. Anal Bioanal Chem 400:295–303PubMedCrossRefGoogle Scholar
  18. 18.
    Kašička V (2012) Recent developments in CE and CEC of peptides (2009–2011). Electrophoresis 33:48–73PubMedCrossRefGoogle Scholar
  19. 19.
    Gimenez E, Ramos-Hernan R, Benavente F, Barbosa J, Sanz-Nebot V (2012) Analysis of recombinant human erythropoietin glycopeptides by capillary electrophoresis electrospray-time of flight-mass spectrometry. Anal Chim Acta 709:81–90PubMedCrossRefGoogle Scholar
  20. 20.
    McDonald WH, Yates JR (2003) Shotgun proteomics: integrating technologies to answer biological questions. Curr Opinion Mol Therapeut 5:302–309Google Scholar
  21. 21.
    Ning ZB, Zhou H, Wang FJ, bu-Farha M, Figeys D (2011) Analytical Aspects of Proteomics: 2009–2010. Anal Chem 83:4407–4426PubMedCrossRefGoogle Scholar
  22. 22.
    Righetti PG, Boschetti E, Lomas L, Citterio A (2006) Protein Equalizer (TM) Technology: the quest for a “democratic proteome”. Proteomics 6:3980–3992PubMedCrossRefGoogle Scholar
  23. 23.
    Görg A, Weiss W, Dunn MJ (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4:3665–3685PubMedCrossRefGoogle Scholar
  24. 24.
    Westermeier R, Schickle H (2009) The current state of the art in high-resolution two-dimensional electrophoresis. Arch Physiol Biochem 115:279–285PubMedCrossRefGoogle Scholar
  25. 25.
    Faris RJ, Wang H, Wang T (2008) Improving digestibility of soy flour by reducing disulfide bonds with thioredoxin. J Agric Food Chem 56:7146–7150PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Carolina Simó
    • 1
  • Alejandro Cifuentes
    • 1
  • Václav Kašička
    • 2
  1. 1.Laboratory of Foodomics, CIAL, CSICMadridSpain
  2. 2.Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech RepublicPragueCzech Republic

Personalised recommendations