Skip to main content

FX Cloning: A Versatile High-Throughput Cloning System for Characterization of Enzyme Variants

  • Protocol
  • First Online:
Enzyme Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 978))

Abstract

Methods for the cloning of large numbers of open reading frames (ORFs) into expression vectors are of critical importance for diverse disciplines in biology. Here I describe a system termed FX cloning that facilitates the high-throughput generation of expression constructs. FX cloning combines attractive features of established recombination- and single-strand-annealing-based cloning methods that were thus far not unified in one single method. FX cloning allows the straightforward transfer of a sequence-verified ORF to a variety of expression vectors, and it avoids the common but undesirable feature of significantly extending target ORFs with cloning-related sequences. It leaves a minimal seam of only a single amino acid to either side of the protein. Furthermore, FX cloning is highly efficient and economic in its use. The method is based on a class IIS restriction enzyme and negative selection markers. The full procedure takes place in one pot and does not require intermediate purifications. The method has proven to be very robust and suitable for all common pro- and eukaryotic expression systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blommel PG, Martin PA, Wrobel RL, Steffen E, Fox BG (2006) High efficiency single step production of expression plasmids from cDNA clones using the Flexi Vector cloning system. Protein Expr Purif 47:562–570

    Article  PubMed  CAS  Google Scholar 

  2. Hartley JL, Temple GF, Brasch MA (2000) DNA cloning using in vitro site-specific recombination. Genome Res 10:1788–1795

    Article  PubMed  CAS  Google Scholar 

  3. Aslanidis C, de Jong PJ (1991) Coincidence cloning of Alu PCR products. Proc Natl Acad Sci U S A 88:6765–6769

    Article  PubMed  CAS  Google Scholar 

  4. Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4:251–256

    Article  PubMed  CAS  Google Scholar 

  5. Klock HE, Koesema EJ, Knuth MW, Lesley SA (2008) Combining the polymerase incomplete primer extension method for cloning and mutagenesis with microscreening to accelerate structural genomics efforts. Proteins 71:982–994

    Article  PubMed  CAS  Google Scholar 

  6. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  PubMed  CAS  Google Scholar 

  7. Berrow NS, Alderton D, Owens RJ (2009) The precise engineering of expression vectors using high-throughput In-Fusion PCR cloning. Methods Mol Biol 498:75–90

    Article  PubMed  CAS  Google Scholar 

  8. Geertsma ER, Dutzler R (2011) A versatile and efficient high-throughput cloning tool for structural biology. Biochemistry 50:3272–3278

    Article  PubMed  CAS  Google Scholar 

  9. Szybalski W, Kim SC, Hasan N, Podhajska AJ (1991) Class-IIS restriction enzymes—a review. Gene 100:13–26

    Article  PubMed  CAS  Google Scholar 

  10. Bernard P, Gabant P, Bahassi EM, Couturier M (1994) Positive-selection vectors using the F plasmid ccdB killer gene. Gene 148:71–74

    Article  PubMed  CAS  Google Scholar 

  11. Recorbet G, Robert C, Givaudan A, Kudla B, Normand P, Faurie G (1993) Conditional suicide system of Escherichia coli released into soil that uses the Bacillus subtilis sacB gene. Appl Environ Microbiol 59:1361–1366

    PubMed  CAS  Google Scholar 

  12. Zheng L, Baumann U, Reymond JL (2004) An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res 32:e115

    Article  PubMed  Google Scholar 

  13. Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS (1991) ‘Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 19:4008

    Article  PubMed  CAS  Google Scholar 

  14. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor, New York

    Google Scholar 

  15. Guzman LM, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130

    PubMed  CAS  Google Scholar 

  16. Tillett D, Neilan BA (1999) Enzyme-free cloning: a rapid method to clone PCR products independent of vector restriction enzyme sites. Nucleic Acids Res 27:e26

    Article  PubMed  CAS  Google Scholar 

  17. Marsischky G, LaBaer J (2004) Many paths to many clones: a comparative look at high-throughput cloning methods. Genome Res 14:2020–2028

    Article  PubMed  CAS  Google Scholar 

  18. Hamilton MD, Nuara AA, Gammon DB, Buller RM, Evans DH (2007) Duplex strand joining reactions catalyzed by vaccinia virus DNA polymerase. Nucleic Acids Res 35:143–151

    Article  PubMed  CAS  Google Scholar 

  19. Cohen SN, Chang AC, Boyer HW, Helling RB (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci U S A 70:3240–3244

    Article  PubMed  CAS  Google Scholar 

  20. Colwill K, Wells CD, Elder K, Goudreault M, Hersi K, Kulkarni S, Hardy WR, Pawson T, Morin GB (2006) Modification of the creator recombination system for proteomics applications—improved expression by addition of splice sites. BMC Biotechnol 6:13

    Article  PubMed  Google Scholar 

  21. Liu Q, Li MZ, Leibham D, Cortez D, Elledge SJ (1998) The univector plasmid-fusion system, a method for rapid construction of recombinant DNA without restriction enzymes. Curr Biol 8:1300–1309

    Article  PubMed  CAS  Google Scholar 

  22. Li MZ, Elledge SJ (2005) MAGIC, an in vivo genetic method for the rapid construction of recombinant DNA molecules. Nat Genet 37:311–319

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

E.R.G. acknowledges a long-term fellowship from the Human Frontier Science Program and thanks Prof. Raimund Dutzler for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric R. Geertsma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer New York

About this protocol

Cite this protocol

Geertsma, E.R. (2013). FX Cloning: A Versatile High-Throughput Cloning System for Characterization of Enzyme Variants. In: Samuelson, J. (eds) Enzyme Engineering. Methods in Molecular Biology, vol 978. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-293-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-293-3_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-292-6

  • Online ISBN: 978-1-62703-293-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics