Skip to main content

Homeostatic Proliferation of Mature T Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 979))

Abstract

Under normal circumstances, the secondary lymphoid tissues contain a predictable number of T cells with a diverse T cell receptor (TCR) repertoire. Such a T cell pool must be of sufficient size to confer maximum protection of the host from infectious pathogens and cancer, but small enough not to overburden the host. The T cell pool is maintained by a combination of de novo T cell production by the thymus and by the long-term survival and gradual turnover of mature T cells in the periphery. The latter process, termed homeostatic proliferation, has been intensely investigated over the past 20 years, and a few techniques have been developed to facilitate these studies. In this chapter, we describe the experimental procedures that allow conspicuous visualization of homeostatic proliferation, which have been instrumental in facilitating recent advances in the study of T cell homeostasis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ernst B, Lee DS, Chang JM, Sprent J, Surh CD (1999) The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery. Immunity 11:173–181

    Article  PubMed  CAS  Google Scholar 

  2. Murali-Krishna K, Ahmed R (2000) Cutting edge: naive T cells masquerading as memory cells. J Immunol 165:1733–1737

    PubMed  CAS  Google Scholar 

  3. Schluns KS, Kieper WC, Jameson SC, Lefrancois L (2000) Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat Immunol 1:426–432

    Article  PubMed  CAS  Google Scholar 

  4. Tan JT, Ernst B, Kieper WC, LeRoy E, Sprent J, Surh CD (2002) Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J Exp Med 195:1523–1532

    Article  PubMed  CAS  Google Scholar 

  5. Goldrath AW, Sivakumar PV, Glaccum M, Kennedy MK, Bevan MJ, Benoist C, Mathis D, Butz EA (2002) Cytokine requirements for acute and basal homeostatic proliferation of naive and memory CD8+ T cells. J Exp Med 195:1515–1522

    Article  PubMed  CAS  Google Scholar 

  6. Baccala R, Witherden D, Gonzalez-Quintial R, Dummer W, Surh CD, Havran WL, Theofilopoulos AN (2005) Gamma delta T cell homeostasis is controlled by IL-7 and IL-15 together with subset-specific factors. J Immunol 174:4606–4612

    PubMed  CAS  Google Scholar 

  7. French JD, Roark CL, Born WK, O’Brien RL (2005) {gamma} {delta} T cell homeostasis is established in competition with {alpha} {beta} T cells and NK cells. Proc Natl Acad Sci U S A 102:14741–14746

    Article  PubMed  CAS  Google Scholar 

  8. Matsuda JL, Gapin L, Sidobre S, Kieper WC, Tan JT, Ceredig R, Surh CD, Kronenberg M (2002) Homeostasis of V alpha 14i NKT cells. Nat Immunol 3:966–974

    Article  PubMed  CAS  Google Scholar 

  9. Ranson T, Vosshenrich CA, Corcuff E, Richard O, Laloux V, Lehuen A, Di Santo JP (2003) IL-15 availability conditions homeostasis of peripheral natural killer T cells. Proc Natl Acad Sci U S A 100:2663–2668

    Article  PubMed  CAS  Google Scholar 

  10. Koka R, Burkett PR, Chien M, Chai S, Chan F, Lodolce JP, Boone DL, Ma A (2003) Interleukin (IL)-15R[alpha]-deficient natural killer cells survive in normal but not IL-15R[alpha]-deficient mice. J Exp Med 197:977–984

    Article  PubMed  CAS  Google Scholar 

  11. Prlic M, Blazar BR, Farrar MA, Jameson SC (2003) In vivo survival and homeostatic proliferation of natural killer cells. J Exp Med 197:967–976

    Article  PubMed  CAS  Google Scholar 

  12. Ranson T, Vosshenrich CA, Corcuff E, Richard O, Muller W, Di Santo JP (2003) IL-15 is an essential mediator of peripheral NK-cell homeostasis. Blood 101:4887–4893

    Article  PubMed  CAS  Google Scholar 

  13. Jamieson AM, Isnard P, Dorfman JR, Coles MC, Raulet DH (2004) Turnover and proliferation of NK cells in steady state and lymphopenic conditions. J Immunol 172:864–870

    PubMed  CAS  Google Scholar 

  14. Purton JF, Tan JT, Rubinstein MP, Kim DM, Sprent J, Surh CD (2007) Antiviral CD4+ memory T cells are IL-15 dependent. J Exp Med 204:951–961

    Article  PubMed  CAS  Google Scholar 

  15. Sprent J, Surh CD (2011) Normal T cell homeostasis: the conversion of naive cells into memory-phenotype cells. Nat Immunol 12: 478–484

    Article  PubMed  CAS  Google Scholar 

  16. Michalek RD, Rathmell JC (2010) The metabolic life and times of a T-cell. Immunol Rev 236:190–202

    Article  PubMed  CAS  Google Scholar 

  17. Osborne LC, Abraham N (2010) Regulation of memory T cells by gammac cytokines. Cytokine 50:105–113

    Article  PubMed  CAS  Google Scholar 

  18. Takada K, Jameson SC (2009) Naive T cell homeostasis: from awareness of space to a sense of place. Nat Rev Immunol 9:823–832

    Article  PubMed  CAS  Google Scholar 

  19. Surh CD, Sprent J (2008) Homeostasis of naive and memory T cells. Immunity 29:848–862

    Article  PubMed  CAS  Google Scholar 

  20. Rochman Y, Spolski R, Leonard WJ (2009) New insights into the regulation of T cells by gamma(c) family cytokines. Nat Rev Immunol 9:480–490

    Article  PubMed  CAS  Google Scholar 

  21. van Leeuwen EM, Sprent J, Surh CD (2009) Generation and maintenance of memory CD4(+) T Cells. Curr Opin Immunol 21:167–172

    Article  PubMed  Google Scholar 

  22. Parish CR (1999) Fluorescent dyes for lymphocyte migration and proliferation studies. Immunol Cell Biol 77:499–508

    Article  PubMed  CAS  Google Scholar 

  23. Shapiro HM, John Wiley and Sons (2003) Practical flow cytometry. Wiley-Liss, New York, pp 371–374

    Google Scholar 

  24. Bantly AD, Gray BD, Breslin E, Weinstein EG, Muirhead KA, Ohlsson-Wilhelm BM, Moore JS (2007) Cell Vue Claret, a new far-red dye, facilitates polychromatic assessment of immune cell proliferation. Immunol Invest 36: 581–605

    Article  PubMed  CAS  Google Scholar 

  25. Yen MH, Lepak N, Swain SL (2002) Induction of CD4 T cell changes in murine AIDS is dependent on costimulation and involves a dysregulation of homeostasis. J Immunol 169: 722–731

    PubMed  CAS  Google Scholar 

  26. Hawkins ED, Hommel M, Turner ML, Battye FL, Markham JF, Hodgkin PD (2007) Measuring lymphocyte proliferation, survival and differentiation using CFSE time-series data. Nat Protoc 2:2057–2067

    Article  PubMed  CAS  Google Scholar 

  27. Quah BJ, Warren HS, Parish CR (2007) Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Nat Protoc 2:2049–2056

    Article  PubMed  CAS  Google Scholar 

  28. Kieper WC, Troy A, Burghardt JT, Ramsey C, Lee JY, Jiang HQ, Dummer W, Shen H, Cebra JJ, Surh CD (2005) Recent immune status determines the source of antigens that drive homeostatic T cell expansion. J Immunol 174:3158–3163

    PubMed  CAS  Google Scholar 

  29. Min B, Yamane H, Hu-Li J, Paul WE (2005) Spontaneous and homeostatic proliferation of CD4 T cells are regulated by different mechanisms. J Immunol 174:6039–6044

    PubMed  CAS  Google Scholar 

  30. Tsunobuchi H, Nishimura H, Goshima F, Daikoku T, Nishiyama Y, Yoshikai Y (2000) Memory-type CD8+ T cells protect IL-2 receptor alpha-deficient mice from systemic infection with herpes simplex virus type 2. J Immunol 165:4552–4560

    PubMed  CAS  Google Scholar 

  31. Cho JH, Boyman O, Kim HO, Hahm B, Rubinstein MP, Ramsey C, Kim DM, Surh CD, Sprent J (2007) An intense form of homeostatic proliferation of naive CD8+ cells driven by IL-2. J Exp Med 204:1787–1801

    Article  PubMed  CAS  Google Scholar 

  32. Ramsey C, Rubinstein MP, Kim DM, Cho JH, Sprent J, Surh CD (2008) The lymphopenic environment of CD132 (common gamma-chain)-deficient hosts elicits rapid homeostatic proliferation of naive T cells via IL-15. J Immunol 180:5320–5326

    PubMed  CAS  Google Scholar 

  33. Guimond M, Veenstra RG, Grindler DJ, Zhang H, Cui Y, Murphy RD, Kim SY, Na R, Hennighausen L, Kurtulus S, Erman B, Matzinger P, Merchant MS, Mackall CL (2009) Interleukin 7 signaling in dendritic cells regulates the homeostatic proliferation and niche size of CD4+ T cells. Nat Immunol 10:149–157

    Article  PubMed  CAS  Google Scholar 

  34. Martin CE, Kim DM, Sprent J, Surh CD (2010) Is IL-7 from dendritic cells essential for the homeostasis of CD4+ T cells? Nat Immunol 11:547–548, author reply 8

    Article  PubMed  CAS  Google Scholar 

  35. Asavaroengchai W, Kotera Y, Mule JJ (2002) Tumor lysate-pulsed dendritic cells can elicit an effective antitumor immune response during early lymphoid recovery. Proc Natl Acad Sci U S A 99:931–936

    Article  PubMed  CAS  Google Scholar 

  36. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850–854

    Article  PubMed  CAS  Google Scholar 

  37. Dummer W, Niethammer AG, Baccala R, Lawson BR, Wagner N, Reisfeld RA, Theofilopoulos AN (2002) T cell homeostatic proliferation elicits effective antitumor autoimmunity. J Clin Invest 110:185–192

    PubMed  CAS  Google Scholar 

  38. Melchionda F, Fry TJ, Milliron MJ, McKirdy MA, Tagaya Y, Mackall CL (2005) Adjuvant IL-7 or IL-15 overcomes immunodominance and improves survival of the CD8+ memory cell pool. J Clin Invest 115:1177–1187

    PubMed  CAS  Google Scholar 

  39. Pellegrini M, Calzascia T, Elford AR, Shahinian A, Lin AE, Dissanayake D, Dhanji S, Nguyen LT, Gronski MA, Morre M, Assouline B, Lahl K, Sparwasser T, Ohashi PS, Mak TW (2009) Adjuvant IL-7 antagonizes multiple cellular and molecular inhibitory networks to enhance immunotherapies. Nat Med 15:528–536

    Article  PubMed  CAS  Google Scholar 

  40. Ferreira C, Barthlott T, Garcia S, Zamoyska R, Stockinger B (2000) Differential survival of naive CD4 and CD8 T cells. J Immunol 165:3689–3694

    PubMed  CAS  Google Scholar 

  41. McFarland HI, Rosenberg AS (2009) Skin allograft rejection. In: John E. Coligan et al. (eds) Current protocols in immunology. Chapter 4: Unit 4

  42. Hathcock KS (2001) T cell depletion by cytotoxic elimination. Curr Protoc Immunol. Chapter 3: Unit 3 4

  43. Dunn TB (1954) Normal and pathologic ­anatomy of the reticular tissue in laboratory mice, with a classification and discussion of neoplasms. J Natl Cancer Inst 14:1281–1433

    PubMed  CAS  Google Scholar 

  44. Van den Broeck W, Derore A, Simoens P (2006) Anatomy and nomenclature of murine lymph nodes: descriptive study and nomenclatory standardization in BALB/cAnNCrl mice. J Immunol Methods 312:12–19

    Article  PubMed  Google Scholar 

  45. Dummer W, Ernst B, LeRoy E, Lee D, Surh C (2001) Autologous regulation of naive T cell homeostasis within the T cell compartment. J Immunol 166:2460–2468

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles D. Surh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Martin, C.E., Frimpong-Boateng, K., Spasova, D.S., Stone, J.C., Surh, C.D. (2013). Homeostatic Proliferation of Mature T Cells. In: Snow, A., Lenardo, M. (eds) Immune Homeostasis. Methods in Molecular Biology, vol 979. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-290-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-290-2_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-289-6

  • Online ISBN: 978-1-62703-290-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics