Skip to main content

Designs for Massively Parallel Sequencing Approaches to Identify Causal Mutations in Human Immune Disorders

  • Protocol
  • First Online:
Immune Homeostasis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 979))

  • 2782 Accesses

Abstract

Massively parallel sequencing technologies provide new opportunities to discover causal variants and ­narrow down candidate genes responsible for human Mendelian disorders. Such information can in turn provide new insights into understanding the basic science behind, as well as improving diagnosis and treatment for, these disorders. In this chapter, we review experimental design and data analysis for sequencing studies of human immune disorders. We discuss optimal experimental designs for sample selection and sequencing approaches, as well as key aspects of data analysis such as filtering and prioritization of identified variants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bolze A et al (2010) Whole-exome-sequencing-based discovery of human FADD deficiency. Am J Hum Genet 87:873–881

    Article  PubMed  CAS  Google Scholar 

  2. Ng SB et al (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461:272–276

    Article  PubMed  CAS  Google Scholar 

  3. Liu L et al (2011) Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med 208:1635–1648

    Article  PubMed  CAS  Google Scholar 

  4. Li FY et al (2011) Second messenger role for Mg2+ revealed by human T-cell immunodeficiency. Nature 475:471–476

    Article  PubMed  CAS  Google Scholar 

  5. O’Roak BJ et al (2011) Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet 43:585–589

    Article  PubMed  Google Scholar 

  6. Johnson JO et al (2010) Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68:857–864

    Article  PubMed  CAS  Google Scholar 

  7. Wang JL et al (2010) TGM6 identified as a novel causative gene of spinocerebellar ataxias using exome sequencing. Brain 133:3510–3518

    Article  PubMed  Google Scholar 

  8. Musunuru K et al (2010) Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N Engl J Med 363:2220–2227

    Article  PubMed  CAS  Google Scholar 

  9. Krawitz PM et al (2010) Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome. Nat Genet 42:827–829

    Article  PubMed  CAS  Google Scholar 

  10. Ng SB et al (2010) Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 42:30–35

    Article  PubMed  CAS  Google Scholar 

  11. Lalonde E et al (2010) Unexpected allelic heterogeneity and spectrum of mutations in Fowler syndrome revealed by next-generation exome sequencing. Hum Mutat 31:918–923

    Article  PubMed  CAS  Google Scholar 

  12. Pierce SB et al (2010) Mutations in the DBP-deficiency protein HSD17B4 cause ovarian dysgenesis, hearing loss, and ataxia of Perrault Syndrome. Am J Hum Genet 87:282–288

    Article  PubMed  CAS  Google Scholar 

  13. Hoischen A et al (2010) De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat Genet 42:483–485

    Article  PubMed  CAS  Google Scholar 

  14. Gilissen C et al (2010) Exome sequencing identifies WDR35 variants involved in Sensenbrenner syndrome. Am J Hum Genet 87:418–423

    Article  PubMed  CAS  Google Scholar 

  15. Ng SB et al (2010) Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 42:790–793

    Article  PubMed  CAS  Google Scholar 

  16. Botstein D, Risch N (2003) Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet 33(Suppl):228–237

    Article  PubMed  CAS  Google Scholar 

  17. Choi M et al (2009) Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci USA 106:19096–19101

    Article  PubMed  CAS  Google Scholar 

  18. Ku CS et al (2011) Revisiting Mendelian disorders through exome sequencing. Hum Genet 129:351–370

    Article  PubMed  Google Scholar 

  19. Okou DT et al (2007) Microarray-based genomic selection for high-throughput resequencing. Nat Methods 4:907–909

    Article  PubMed  CAS  Google Scholar 

  20. Gnirke A et al (2009) Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 27:182–189

    Article  PubMed  CAS  Google Scholar 

  21. Bainbridge MN et al (2010) Whole exome capture in solution with 3 Gbp of data. Genome Biol 11:R62

    Article  PubMed  Google Scholar 

  22. Sulonen AM et al (2011) Comparison of solution-based exome capture methods for next generation sequencing. Genome Biol 12:R94

    Article  PubMed  CAS  Google Scholar 

  23. Brownstein Z et al (2011) Targeted genomic capture and massively parallel sequencing to identify genes for hereditary hearing loss in middle eastern families. Genome Biol 12:R89

    Article  PubMed  CAS  Google Scholar 

  24. Nikopoulos K et al (2010) Next-generation sequencing of a 40 Mb linkage interval reveals TSPAN12 mutations in patients with familial exudative vitreoretinopathy. Am J Hum Genet 86:240–247

    Article  PubMed  CAS  Google Scholar 

  25. Rehman AU et al (2010) Targeted capture and next-generation sequencing identifies C9orf75, encoding taperin, as the mutated gene in nonsyndromic deafness DFNB79. Am J Hum Genet 86:378–388

    Article  PubMed  CAS  Google Scholar 

  26. Tewhey R et al (2009) Microdroplet-based PCR enrichment for large-scale targeted sequencing. Nat Biotechnol 27:1025–1031

    Article  PubMed  CAS  Google Scholar 

  27. Johansson H et al (2011) Targeted resequencing of candidate genes using selector probes. Nucleic Acids Res 39:e8

    Article  PubMed  CAS  Google Scholar 

  28. Chepelev I et al (2009) Detection of single nucleotide variations in expressed exons of the human genome using RNA-Seq. Nucleic Acids Res 37:e106

    Article  PubMed  Google Scholar 

  29. Cirulli ET et al (2010) Screening the human exome: a comparison of whole genome and whole transcriptome sequencing. Genome Biol 11:R57

    Article  PubMed  Google Scholar 

  30. Lupski JR et al (2010) Whole-genome sequencing in a patient with Charcot-Marie-Tooth neuropathy. N Engl J Med 362:1181–1191

    Article  PubMed  CAS  Google Scholar 

  31. Horner DS et al (2010) Bioinformatics approaches for genomics and post genomics applications of next-generation sequencing. Brief Bioinform 11:181–197

    Article  PubMed  CAS  Google Scholar 

  32. Meyerson M et al (2010) Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 11:685–696

    Article  PubMed  CAS  Google Scholar 

  33. Bentley DR et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59

    Article  PubMed  CAS  Google Scholar 

  34. Sherry ST et al (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29:308–311

    Article  PubMed  CAS  Google Scholar 

  35. Consortium, T. G. P (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073

    Article  Google Scholar 

  36. Altshuler DM et al (2010) Integrating common and rare genetic variation in diverse human populations. Nature 467:52–58

    Article  PubMed  CAS  Google Scholar 

  37. Stitziel NO et al (2011) Computational and statistical approaches to analyzing variants identified by exome sequencing. Genome Biol 12:227

    Article  PubMed  Google Scholar 

  38. Adzhubei IA et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249

    Article  PubMed  CAS  Google Scholar 

  39. Cooper GM et al (2010) Single-nucleotide evolutionary constraint scores highlight disease-causing mutations. Nat Methods 7:250–251

    Article  PubMed  CAS  Google Scholar 

  40. Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31:3812–3814

    Article  PubMed  CAS  Google Scholar 

  41. Pollard KS et al (2010) Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res 20:110–121

    Article  PubMed  CAS  Google Scholar 

  42. Siepel A et al (2005) Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 15:1034–1050

    Article  PubMed  CAS  Google Scholar 

  43. Asthana S et al (2007) Analysis of sequence conservation at nucleotide resolution. PLoS Comput Biol 3:e254

    Article  PubMed  Google Scholar 

  44. Mailman MD et al (2007) The NCBI dbGaP database of genotypes and phenotypes. Nat Genet 39:1181–1186

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Bernice Lo and Helen Matthews for critically reading the manuscript. This work was supported by the Intramural Research Program of the National Institutes of Health and the National Institute of Allergy and Infectious Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen C. Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zhang, Y., Su, H.C. (2013). Designs for Massively Parallel Sequencing Approaches to Identify Causal Mutations in Human Immune Disorders. In: Snow, A., Lenardo, M. (eds) Immune Homeostasis. Methods in Molecular Biology, vol 979. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-290-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-290-2_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-289-6

  • Online ISBN: 978-1-62703-290-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics