Skip to main content

Optimal Molecular Profiling of Tissue and Tissue Components: Defining the Best Processing and Microdissection Methods for Biomedical Applications

  • Protocol
  • First Online:
Pancreatic Cancer

Abstract

Isolation of well-preserved pure cell populations is a prerequisite for sound studies of the molecular basis of any tissue-based biological phenomenon. This updated chapter reviews current methods for obtaining anatomically specific signals from molecules isolated from tissues, a basic requirement for productive linking of phenotype and genotype. The quality of samples isolated from tissue and used for molecular analysis is often glossed over or omitted from publications, making interpretation and replication of data difficult or impossible. Fortunately, recently developed techniques allow life scientists to better document and control the quality of samples used for a given assay, creating a foundation for improvement in this area. Tissue processing for molecular studies usually involves some or all of the following steps: tissue collection, gross dissection/identification, fixation, processing/embedding, storage/archiving, sectioning, staining, microdissection/annotation, and pure analyte labeling/identification and quantification. We provide a detailed comparison of some current tissue microdissection technologies and provide detailed example protocols for tissue component handling upstream and downstream from microdissection. We also discuss some of the physical and chemical issues related to optimal tissue processing and include methods specific to cytology specimens. We encourage each laboratory to use these as a starting point for optimization of their overall process of moving from collected tissue to high-quality, appropriately anatomically tagged scientific results. Improvement in this area will significantly increase life science quality and productivity. The chapter is divided into introduction, materials, protocols, and notes subheadings. Because many protocols are covered in each of these sections, information relating to a single protocol is not contiguous. To get the greatest benefit from this chapter, readers are advised to read through the entire chapter first, identify protocols appropriate to their laboratory for each step in their workflow, and then reread entries in each section pertaining to each of these single protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harrell JC, Dye WW, Harvell DM, Sartorius CA, Horwitz KB (2008) Contaminating cells alter gene signatures in whole organ versus laser capture microdissected tumors: a comparison of experimental breast cancers and their lymph node metastases. Clin Exp Metastasis 25:81–88

    Article  PubMed  Google Scholar 

  2. Klee EW, Erdogan S, Tillmans L, Kosari F, Sun Z, Wigle DA, Yang P, Aubry MC, Vasmatzis G (2009) Impact of sample acquisition and linear amplification on gene expression profiling of lung adenocarcinoma: laser capture micro-dissection cell-sampling versus bulk tissue-sampling. BMC Med Genomics 2:13

    Article  PubMed  Google Scholar 

  3. El-Serag HB, Nurgalieva ZZ, Mistretta TA, Finegold MJ, Souza R, Hilsenbeck S, Shaw C, Darlington G (2009) Gene expression in Barrett’s esophagus: laser capture versus whole tissue. Scand J Gastroenterol 44:787–795

    Article  PubMed  CAS  Google Scholar 

  4. Silvestri A, Colombatti A, Calvert VS, Deng J, Mammano E, Belluco C, De Marchi F, Nitti D, Liotta LA, Petricoin EF, Pierobon M (2010) Protein pathway biomarker analysis of human cancer reveals requirement for upfront cellular-enrichment processing. Lab Invest 90:787–796

    Article  PubMed  CAS  Google Scholar 

  5. Eberle FC, Rodriguez-Canales J, Wei L, Hanson JC, Killian JK, Sun HW, Adams LG, Hewitt SM, Wilson WH, Pittaluga S, Meltzer PS, Staudt LM, Emmert-Buck MR, Jaffe ES (2011) Methylation profiling of mediastinal gray zone lymphoma reveals a distinctive signature with elements shared by classical Hodgkin’s lymphoma and primary mediastinal large B-cell lymphoma. Haematologica 96:558–566

    Article  PubMed  Google Scholar 

  6. Chowdhuri SR, Xil L, Pham THT, Hanson J, Rodriguez-Canales J, Berman A, Rajan A, Giaccone G, Emmert-Buck M, Raffeld M, Filie AC (2012) EGFR and KRAS mutation analysis in cytologic samples of lung adenocarcinoma enabled by laser capture microdissection. Mod Pathol 25(4):548–555

    Article  PubMed  CAS  Google Scholar 

  7. Tangrea MA, Mukherjee S, Gao B, Markey SP, Du Q, Armani M, Kreitman MS, Rosenberg AM, Wallis BS, Eberle FC, Duncan FC, Hanson JC, Chuaqui RF, Rodriguez-Canales J, Emmert-Buck MR (2011) Effect of immunohistochemistry on molecular analysis of tissue samples: implications for microdissection technologies. J Histochem Cytochem 59:591–600

    Article  PubMed  CAS  Google Scholar 

  8. Eltoum IA, Siegal GP, Frost AR (2002) Microdissection of histologic sections: past, present, and future. Adv Anat Pathol 9:316–322

    Article  PubMed  Google Scholar 

  9. Srinivasan M, Sedmak D, Jewell S (2002) Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol 161:1961–1971

    Article  PubMed  CAS  Google Scholar 

  10. Best CJ, Emmert-Buck MR (2001) Molecular profiling of tissue samples using laser capture microdissection. Expert Rev Mol Diagn 1:53–60

    Article  PubMed  CAS  Google Scholar 

  11. Ahram M, Flaig MJ, Gillespie JW, Duray PH, Linehan WM, Ornstein DK, Niu S, Zhao Y, Petricoin EF III, Emmert-Buck MR (2003) Evaluation of ethanol-fixed, paraffin-embedded tissues for proteomic applications. Proteomics 3:413–421

    Article  PubMed  CAS  Google Scholar 

  12. Englert CR, Baibakov GV, Emmert-Buck MR (2000) Layered expression scanning: rapid molecular profiling of tumor samples. Cancer Res 60:1526–1530

    PubMed  CAS  Google Scholar 

  13. Fend F, Emmert-Buck MR, Chuaqui R, Cole K, Lee J, Liotta LA, Raffeld M (1999) Immuno-LCM: laser capture microdissection of immunostained frozen sections for mRNA analysis. Am J Pathol 154:61–66

    Article  PubMed  CAS  Google Scholar 

  14. Gillespie JW, Best CJ, Bichsel VE, Cole KA, Greenhut SF, Hewitt SM, Ahram M, Gathright YB, Merino MJ, Strausberg RL, Epstein JI, Hamilton SR, Gannot G, Baibakova GV, Calvert VS, Flaig MJ, Chuaqui RF, Herring JC, Pfeifer J, Petricoin EF, Linehan WM, Duray PH, Bova GS, Emmert-Buck MR (2002) Evaluation of non-formalin tissue fixation for molecular profiling studies. Am J Pathol 160:449–457

    Article  PubMed  CAS  Google Scholar 

  15. Gillespie JW, Ahram M, Best CJ, Swalwell JI, Krizman DB, Petricoin EF, Liotta LA, Emmert-Buck MR (2001) The role of tissue microdissection in cancer research. Cancer J 7:32–39

    PubMed  CAS  Google Scholar 

  16. Ornstein DK, Gillespie JW, Paweletz CP, Duray PH, Herring J, Vocke CD, Topalian SL, Bostwick DG, Linehan WM, Petricoin EF III, Emmert-Buck MR (2000) Proteomic analysis of laser capture microdissected human prostate cancer and in vitro prostate cell lines. Electrophoresis 21:2235–2242

    Article  PubMed  CAS  Google Scholar 

  17. Simone NL, Remaley AT, Charboneau L, Petricoin EF III, Glickman JW, Emmert-Buck MR, Fleisher TA, Liotta LA (2000) Sensitive immunoassay of tissue cell proteins procured by laser capture microdissection. Am J Pathol 156:445–452

    Article  PubMed  CAS  Google Scholar 

  18. Erickson HS, Albert PS, Gillespie JW, Wallis BS, Rodriguez-Canales J, Linehan WM, Gonzalez S, Velasco A, Chuaqui RF, Emmert-Buck MR (2007) Assessment of normalization strategies for quantitative RT-PCR using microdissected tissue samples. Lab Invest 87:951–962

    Article  PubMed  CAS  Google Scholar 

  19. Erickson HS, Albert PS, Gillespie JW, Rodriguez-Canales J, Marston Linehan W, Pinto PA, Chuaqui RF, Emmert-Buck MR (2009) Quantitative RT-PCR gene expression analysis of laser microdissected tissue samples. Nat Protoc 4:902–922

    Article  PubMed  CAS  Google Scholar 

  20. Bancroft JD, Gamble M (2007) Theory and practice of histological techniques, 6th edn. Churchill Livingstone, Edinburgh

    Google Scholar 

  21. Carson FL, Hladik C (2009) Histotechnology: a self instructional text, 3rd edn. ASCP Press, Chicago

    Google Scholar 

  22. Kiernan JA (2008) Histological and histochemical methods, 4th edn. Scion Publishing, Banbury

    Google Scholar 

  23. Kiernan JA, Mason I (eds) (2002) Microscopy and histology for molecular biologists: a user’s guide. Portland Press, London

    Google Scholar 

  24. Margraf L, Hagler H. Histonet listserver, by the University of Texas Southwestern Medical Center Department of Pathology. Website: http://www.histosearch.com/listserver.html (Accessed on October 11, 2012)

  25. Gassmann M (2003) Quality assurance of RNA derived from laser microdissected tissue samples obtained by the PALM(R) MicroBeam System using the RNA 6000 Pico LabChip(R) kit. 1-8. Agilent Technologies. 3-1-2003

    Google Scholar 

  26. Horobin RW, Kiernan JA (eds) (2002) Conn’s biological stains: a handbook of dyes, stains and fluorochromes for use in biology and medicine, 10th edn. Edition Published for the Biological Stain Commission by BIOS Scientific Publishers, Distributed in US by Springer-Verlag (U.S.), Oxford, UK

    Google Scholar 

  27. Eberle FC, Hanson JC, Killian JK, Wei L, Ylaya K, Hewitt SM, Jaffe ES, Emmert-Buck MR, Rodriguez-Canales J (2010) Immunoguided laser assisted microdissection techniques for DNA methylation analysis of archival tissue specimens. J Mol Diagn 12:394–401

    Article  PubMed  CAS  Google Scholar 

  28. Hanson JC, Tangrea MA, Kim S, Armani MD, Pohida TJ, Bonner RF, Rodriguez-Canales J, Emmert-Buck MR (2011) Expression microdissection adapted to commercial laser dissection instruments. Nat Protoc 6:457–467

    Article  PubMed  CAS  Google Scholar 

  29. Rodriguez-Canales J, Hanson JC, Tangrea MA, Erickson HS, Albert PS, Wallis BS, Richardson AM, Pinto PA, Linehan WM, Gillespie JW, Merino MJ, Libutti SK, Woodson KG, Emmert-Buck MR, Chuaqui RF (2007) Identification of a unique epigenetic sub-microenvironment in prostate cancer. J Pathol 211:410–419

    Article  PubMed  CAS  Google Scholar 

  30. Zhuang Z, Bertheau P, Emmert-Buck MR, Liotta LA, Gnarra J, Linehan WM, Lubensky IA (1995) A microdissection technique for archival DNA analysis of specific cell populations in lesions <1 mm in size. Am J Pathol 146:620–625

    PubMed  CAS  Google Scholar 

  31. Lee JY, Dong SM, Kim SY, Yoo NJ, Lee SH, Park WS (1998) A simple, precise and economical microdissection technique for analysis of genomic DNA from archival tissue sections. Virchows Arch 433:305–309

    Article  PubMed  CAS  Google Scholar 

  32. Gupta SK, Douglas-Jones AG, Morgan JM (1997) Microdissection of stained archival tissue. Mol Pathol 50:218–220

    Article  PubMed  CAS  Google Scholar 

  33. Harsch M, Bendrat K, Hofmeier G, Branscheid D, Niendorf A (2001) A new method for histological microdissection utilizing an ultrasonically oscillating needle: demonstrated by differential mRNA expression in human lung carcinoma tissue. Am J Pathol 158:1985–1990

    Article  PubMed  CAS  Google Scholar 

  34. Beltinger CP, Debatin KM (1998) A simple combined microdissection and aspiration device for the rapid procurement of single cells from clinical peripheral blood smears. Mol Pathol 51:233–236

    Article  PubMed  CAS  Google Scholar 

  35. Zhang Z, Nakamura M, Taniguchi E, Shan L, Yokoi T, Kakudo K (1997) A simple approach to single-cell microdissection and molecular analysis. Anal Quant Cytol Histol 19:514–518

    PubMed  CAS  Google Scholar 

  36. Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA, Liotta LA (1996) Laser capture microdissection [see comments]. Science 274:998–1001

    Article  PubMed  CAS  Google Scholar 

  37. Curran S, McKay JA, McLeod HL, Murray GI (2000) Laser capture microscopy. Mol Pathol 53:64–68

    Article  PubMed  CAS  Google Scholar 

  38. Goldsworthy SM, Stockton PS, Trempus CS, Foley JF, Maronpot RR (1999) Effects of fixation on RNA extraction and amplification from laser capture microdissected tissue. Mol Carcinog 25:86–91

    Article  PubMed  CAS  Google Scholar 

  39. Lawrie LC, Curran S, McLeod HL, Fothergill JE, Murray GI (2001) Application of laser capture microdissection and proteomics in colon cancer. Mol Pathol 54:253–258

    Article  PubMed  CAS  Google Scholar 

  40. Craven RA, Banks RE (2002) Use of laser capture microdissection to selectively obtain distinct populations of cells for proteomic analysis. Methods Enzymol 356:33–49

    Article  PubMed  CAS  Google Scholar 

  41. Nakazono M, Qiu F, Borsuk LA, Schnable PS (2003) Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize. Plant Cell 15:583–596

    Article  PubMed  CAS  Google Scholar 

  42. Luzzi V, Mahadevappa M, Raja R, Warrington JA, Watson MA (2003) Accurate and reproducible gene expression profiles from laser capture microdissection, transcript amplification, and high density oligonucleotide microarray analysis. J Mol Diagn 5:9–14

    Article  PubMed  CAS  Google Scholar 

  43. Zhu L, Yan W, Rodriguez-Canales J, Rosenberg AM, Hu N, Goldstein AM, Taylor PR, Erickson HS, Emmert-Buck MR, Tangrea MA (2011) MicroRNA analysis of microdissected normal squamous esophageal epithelium and tumor cells. Am J Cancer Res 1:574–584

    PubMed  Google Scholar 

  44. Hipp J, Cheng J, Hanson JC, Yan W, Taylor P, Hu N, Rodriguez-Canales J, Hipp J, Tangrea MA, Emmert-Buck MR, Balis U (2011) SIVQ-aided laser capture microdissection: a tool for high-throughput expression profiling. J Pathol Inform 2:19

    Article  PubMed  Google Scholar 

  45. Burgemeister R, Gangnus R, Haar B, Schutze K, Sauer U (2003) High quality RNA retrieved from samples obtained by using LMPC (laser microdissection and pressure catapulting) technology. Pathol Res Pract 199:431–436

    Article  PubMed  CAS  Google Scholar 

  46. Fink L, Kohlhoff S, Stein MM, Hanze J, Weissmann N, Rose F, Akkayagil E, Manz D, Grimminger F, Seeger W, Bohle RM (2002) cDNA array hybridization after laser-assisted microdissection from nonneoplastic tissue. Am J Pathol 160:81–90

    Article  PubMed  CAS  Google Scholar 

  47. Cohen CD, Grone HJ, Grone EF, Nelson PJ, Schlondorff D, Kretzler M (2002) Laser microdissection and gene expression analysis on formaldehyde-fixed archival tissue. Kidney Int 61:125–132

    Article  PubMed  CAS  Google Scholar 

  48. Kleeberger W, Rothamel T, Glockner S, Lehmann U, Kreipe H (2000) Laser-assisted microdissection and short tandem repeat PCR for the investigation of graft chimerism after solid organ transplantation. Pathobiology 68:196–201

    Article  PubMed  CAS  Google Scholar 

  49. Inoue K, Sakurada Y, Murakami M, Shirota M, Shirota K (2003) Detection of gene expression of vascular endothelial growth factor and flk-1 in the renal glomeruli of the normal rat kidney using the laser microdissection system. Virchows Arch 442:159–162

    PubMed  CAS  Google Scholar 

  50. Mori M, Mimori K, Yoshikawa Y, Shibuta K, Utsunomiya T, Sadanaga N, Tanaka F, Matsuyama A, Inoue H, Sugimachi K (2002) Analysis of the gene-expression profile regarding the progression of human gastric carcinoma. Surgery 131:S39–S47

    Article  PubMed  Google Scholar 

  51. Brockhoff G, Fleischmann S, Meier A, Wachs FP, Hofstaedter F, Kneehole R (1999) Use of a mechanical dissociation device to improve standardization of flow cytometric cytokeratin DNA measurements of colon carcinomas. Cytometry 38:184–191

    Article  PubMed  CAS  Google Scholar 

  52. Pertoft H (2000) Fractionation of cells and subcellular particles with Percoll. J Biochem Biophys Methods 44:1–30

    Article  PubMed  CAS  Google Scholar 

  53. Tai YT, Teoh G, Shima Y, Chauhan D, Treon SP, Raje N, Hideshima T, Davies FE, Anderson KC (2000) Isolation and characterization of human multiple myeloma cell enriched populations. J Immunol Methods 235:11–19

    Article  PubMed  CAS  Google Scholar 

  54. Moskaluk CA, Kern SE (1997) Microdissection and polymerase chain reaction amplification of genomic DNA from histological tissue sections. Am J Pathol 150:1547–1552

    PubMed  CAS  Google Scholar 

  55. Goelz SE, Hamilton SR, Vogelstein B (1985) Purification of DNA from formaldehyde fixed and paraffin embedded human tissue. Biochem Biophys Res Commun 130:118–126

    Article  PubMed  CAS  Google Scholar 

  56. Emmert-Buck MR, Gillespie JW, Paweletz CP, Ornstein DK, Basrur V, Appella E, Wang QH, Huang J, Hu N, Taylor P, Petricoin EF III (2000) An approach to proteomic analysis of human tumors. Mol Carcinog 27:158–165

    Article  PubMed  CAS  Google Scholar 

  57. Ikeda K, Monden T, Kanoh T, Tsujie M, Izawa H, Haba A, Ohnishi T, Sekimoto M, Tomita N, Shiozaki H, Monden M (1998) Extraction and analysis of diagnostically useful proteins from formalin-fixed, paraffin-embedded tissue sections. J Histochem Cytochem 46:397–403

    Article  PubMed  CAS  Google Scholar 

  58. Novelli M, Savoia P, Cambieri I, Ponti R, Comessatti A, Lisa F, Bernengo MG (2000) Collagenase digestion and mechanical disaggregation as a method to extract and immunophenotype tumour lymphocytes in cutaneous T-cell lymphomas. Clin Exp Dermatol 25:423–431

    Article  PubMed  CAS  Google Scholar 

  59. Maitra A, Wistuba II, Virmani AK, Sakaguchi M, Park I, Stucky A, Milchgrub S, Gibbons D, Minna JD, Gazdar AF (1999) Enrichment of epithelial cells for molecular studies. Nat Med 5:459–463

    Article  PubMed  CAS  Google Scholar 

  60. Guerrero RB, Batts KP, Brandhagen DJ, Germer JJ, Perez RG, Persing DH (1997) Effects of formalin fixation and prolonged block storage on detection of hepatitis C virus RNA in liver tissue. Diagn Mol Pathol 6:277–281

    Article  PubMed  CAS  Google Scholar 

  61. Ohyama H, Zhang X, Kohno Y, Alevizos M (2000) Laser capture microdissection-generated target sample for high-density oligonucleotide array hybridization. Biotechniques 29:530–536

    PubMed  CAS  Google Scholar 

  62. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  63. Maunsbach AB (1966) The influence of different fixatives and fixation methods on the ultrastructure of rat kidney proximal tubule cells. II. Effects of varying osmolality, ionic strength, buffer system and fixative concentration of glutaraldehyde solutions. J Ultrastruct Res 15:283–309

    Article  PubMed  CAS  Google Scholar 

  64. Morales AR, Essenfeld H, Essenfeld E, Duboue MC, Vincek V, Nadji M (2002) Continuous-specimen-flow, high-throughput, 1-hour tissue processing. A system for rapid diagnostic tissue preparation. Arch Pathol Lab Med 126:583–590

    PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks to Drs. Eun-Chung Park, Douglas P. Clark, and Anirban Maitra for critical reading and suggestions for improvement of the first edition of this manuscript and to Steven H. Chen for technical assistance in preparation of the first edition of this manuscript.

Portions of the text are adapted from Best and Emmert-Buck (10) with permission of the publisher Future Drugs Ltd (London, England). Figures 2, 3, and 4 are adapted from Eltoum, Siegal, and Frost (8) with permission of Lippincott Williams and Wilkins Publishers (Baltimore, MD).

This work was supported in part by the Center for Cancer Research of the National Cancer Institute, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Steven Bova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Rodriguez-Canales, J. et al. (2013). Optimal Molecular Profiling of Tissue and Tissue Components: Defining the Best Processing and Microdissection Methods for Biomedical Applications. In: Su, G. (eds) Pancreatic Cancer. Methods in Molecular Biology, vol 980. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-287-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-287-2_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-286-5

  • Online ISBN: 978-1-62703-287-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics