Skip to main content

Identification and Analysis of Precursors to Invasive Pancreatic Cancer

  • Protocol
  • First Online:
Pancreatic Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 980))

Abstract

Precursor lesions of pancreatic cancer have been recognized about a century ago. The development of a consistent reproducible nomenclature and classification system for these lesions has been a major advance in the study of these noninvasive precursors. Pancreatic intraepithelial neoplasia (PanIN) as microscopic precursor lesions can be distinguished from mucinous cystic neoplasms (MCNs) and intraductal papillary mucinous neoplasms (IPMN) that are cystic and can often be recognized on imaging. Since precursor lesions harbor the unique chance to treat a patient before a fatal pancreatic cancer can arise a molecular characterization is essential to understand the biology and to find diagnostic and therapeutic targets to fight this disease of near uniform lethality. In order to study precursor lesions on a molecular level a meticulous isolation of the neoplastic cells is inevitable. We present the salient histopathologic and molecular features of precursor lesions of pancreatic cancer as well as methods that have proved to be useful within experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vincent A, Herman J, Schulick R, Hruban RH, Goggins M (2011) Pancreatic cancer. Lancet 378(9791):607–620 (in eng)

    Article  PubMed  Google Scholar 

  2. Yachida S et al (2010) Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467(7319):1114–1117 (in eng)

    Article  PubMed  CAS  Google Scholar 

  3. Jones S et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321(5897):1801–1806 (in eng)

    Article  PubMed  CAS  Google Scholar 

  4. Matthaei H, Schulick RD, Hruban RH, Maitra A (2011) Cystic precursors to invasive pancreatic cancer. Nat Rev Gastroenterol Hepatol 8(3):141–150 (in eng)

    Article  PubMed  Google Scholar 

  5. Klimstra DS, Longnecker DS (1994) K-ras mutations in pancreatic ductal proliferative lesions. Am J Pathol 145(6):1547–1550

    PubMed  CAS  Google Scholar 

  6. Hruban RH et al (2001) Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol 25(5):579–586

    Article  PubMed  CAS  Google Scholar 

  7. Hruban RH et al (2004) An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol 28(8):977–987

    Article  PubMed  Google Scholar 

  8. Fernandez-del Castillo C, Adsay NV (2010) Intraductal papillary mucinous neoplasms of the pancreas. Gastroenterology 139(3):708–713, 713 e701–702

    Article  PubMed  Google Scholar 

  9. Longnecker DS et al (2005) Histopathological diagnosis of pancreatic intraepithelial neoplasia and intraductal papillary-mucinous neoplasms: interobserver agreement. Pancreas 31(4):344–349 (in eng)

    Article  PubMed  Google Scholar 

  10. Wu J et al (2011) Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. Sci Transl Med 3(92):92ra66 (in eng)

    Article  PubMed  CAS  Google Scholar 

  11. Hruban RH, Klimstra DS, Pitman MB (2006) Tumors of the pancreas. American Registry of Pathology, Washington, DC

    Google Scholar 

  12. Basturk O, Coban I, Adsay NV (2009) Pancreatic cysts: pathologic classification, differential diagnosis, and clinical implications. Arch Pathol Lab Med 133(3):423–438 (in eng)

    PubMed  Google Scholar 

  13. Biankin AV et al (2001) Overexpression of p21(WAF1/CIP1) is an early event in the development of pancreatic intraepithelial neoplasia. Cancer Res 61(24):8830–8837

    PubMed  CAS  Google Scholar 

  14. Luttges J et al (2001) Allelic loss is often the first hit in the biallelic inactivation of the p53 and DPC4 genes during pancreatic carcinogenesis. Am J Pathol 158(5):1677–1683

    Article  PubMed  CAS  Google Scholar 

  15. Jansen M et al (2002) Aberrant methylation of the 5′ CpG island of TSLC1 is common in pancreatic ductal adenocarcinoma and is first manifest in high-grade PanlNs. Cancer Biol Ther 1(3):293–296

    PubMed  CAS  Google Scholar 

  16. Fukushima N et al (2002) Aberrant methylation of preproenkephalin and p16 genes in pancreatic intraepithelial neoplasia and pancreatic ductal adenocarcinoma. Am J Pathol 160(5):1573–1581

    Article  PubMed  CAS  Google Scholar 

  17. Maitra A et al (2002) Cyclooxygenase 2 expression in pancreatic adenocarcinoma and pancreatic intraepithelial neoplasia: an immunohistochemical analysis with automated cellular imaging. Am J Clin Pathol 118(2):194–201

    Article  PubMed  CAS  Google Scholar 

  18. Maitra A et al (2003) Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray. Mod Pathol 16(9):902–912

    Article  PubMed  Google Scholar 

  19. Takaori K, Kobashi Y, Matsusue S, Matsui K, Yamamoto T (2003) Clinicopathological features of pancreatic intraepithelial neoplasias and their relationship to intraductal papillary-mucinous tumors. J Hepatobiliary Pancreat Surg 10(2):125–136

    Article  PubMed  Google Scholar 

  20. Brat DJ, Lillemoe KD, Yeo CJ, Warfield PB, Hruban RH (1998) Progression of pancreatic intraductal neoplasias to infiltrating adenocarcinoma of the pancreas. Am J Surg Pathol 22(2):163–169

    Article  PubMed  CAS  Google Scholar 

  21. Moskaluk CA, Hruban RH, Kern SE (1997) p16 and K-ras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma. Cancer Res 57(11):2140–2143

    PubMed  CAS  Google Scholar 

  22. Maitra A, Wistuba II, Gazdar AF (2001) Microdissection and the study of cancer pathways. Curr Mol Med 1(1):153–162

    Article  PubMed  CAS  Google Scholar 

  23. Maitra A et al (1999) Enrichment of epithelial cells for molecular studies. Nat Med 5(4):459–463

    Article  PubMed  CAS  Google Scholar 

  24. Wilentz RE et al (2000) Immunohistochemical labeling for dpc4 mirrors genetic status in pancreatic adenocarcinomas: a new marker of DPC4 inactivation. Am J Pathol 156(1):37–43

    Article  PubMed  CAS  Google Scholar 

  25. Wilentz RE et al (2000) Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res 60(7):2002–2006

    PubMed  CAS  Google Scholar 

  26. Iacobuzio-Donahue CA et al (2000) Dpc-4 protein is expressed in virtually all human intraductal papillary mucinous neoplasms of the pancreas: comparison with conventional ductal adenocarcinomas. Am J Pathol 157(3):755–761

    Article  PubMed  CAS  Google Scholar 

  27. Iacobuzio-Donahue CA et al (2000) Dpc4 protein in mucinous cystic neoplasms of the pancreas: frequent loss of expression in invasive carcinomas suggests a role in genetic progression. Am J Surg Pathol 24(11):1544–1548

    Article  PubMed  CAS  Google Scholar 

  28. Dhanasekaran SM et al (2001) Delineation of prognostic biomarkers in prostate cancer. Nature 412(6849):822–826

    Article  PubMed  CAS  Google Scholar 

  29. Rubin MA et al (2002) alpha-Methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. JAMA 287(13):1662–1670

    Article  PubMed  CAS  Google Scholar 

  30. van Heek NT et al (2002) Telomere shortening is nearly universal in pancreatic intraepithelial neoplasia. Am J Pathol 161(5):1541–1547

    Article  PubMed  Google Scholar 

  31. Rexhepaj E et al (2010) Validation of cytoplasmic-to-nuclear ratio of survivin as an indicator of improved prognosis in breast cancer. BMC Cancer 10:639 (in eng)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Anirban Maitra is supported by the Sol Goldman Pancreatic Cancer Research Center and the Michael Rolfe Foundation for Pancreatic Cancer Research. Hanno Matthaei is supported by a fellowship grant by Deutsche Krebshilfe (German Cancer Aid), Bonn, Germany. We are grateful to Dr. Ralph Hruban at Johns Hopkins for his contributions to an earlier edition of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Maitra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Matthaei, H., Molin, M.D., Maitra, A. (2013). Identification and Analysis of Precursors to Invasive Pancreatic Cancer. In: Su, G. (eds) Pancreatic Cancer. Methods in Molecular Biology, vol 980. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-287-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-287-2_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-286-5

  • Online ISBN: 978-1-62703-287-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics