Skip to main content

Isolation of Intracellular Protein – DNA Complexes Using HaloCHIP, an Antibody-Free Alternative to Chromatin Immunoprecipitation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 977))

Abstract

Mapping of protein binding sites within the genome has been significantly advanced by microarray and sequencing technologies, yet the method traditionally used to isolate protein–DNA complexes, chromatin immunoprecipitation, has remained dependent of the use of antibodies. Furthermore, cross-linking is commonly used to trap protein–DNA complexes and the challenge of using antibodies has come in recognition of the cross-linked epitopes, sometimes limiting the success of the approach. Here we present a method, HaloCHIP, which utilizes a HaloTag protein fusion and corresponding interaction resin, HaloLink, for capture of cross-linked protein–DNA complexes directly from a cellular lysate. This process alleviates the need for using an antibody, yields the DNA fragments bound to a particular protein of interest, and allows for a variety of downstream analyses such as PCR, qPCR, microarrays, and sequencing.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Solomon MJ, Larsen PL, Varshavsky A (1988) Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53:937–947

    Article  PubMed  CAS  Google Scholar 

  2. Ren B, Robert F, Wyrick JJ et al (2000) Genome-wide location and function of DNA binding proteins. Science 290:2306–2309

    Article  PubMed  CAS  Google Scholar 

  3. Pugh BF, Gilmour DS (2001) Genome-wide analysis of protein-DNA interactions in living cells. Genome Biol 2:1013

    Article  Google Scholar 

  4. Weinmann AS, Farnham PJ (2002) Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation. Methods 26:37–47

    Article  PubMed  CAS  Google Scholar 

  5. Horak CE, Mahajan MC, Luscombe NM et al (2002) GATA-1 binding sites mapped in the beta-globin locus by using mammalian ChIP-chip analysis. Proc Natl Acad Sci USA 99:2924–2929

    Article  PubMed  CAS  Google Scholar 

  6. Kurdistani SK, Grunstein M (2003) In vivo protein-protein and protein-DNA crosslinking for genomewide binding microarray. Methods 31:90–95

    Article  PubMed  CAS  Google Scholar 

  7. Buck MJ, Lieb JD (2004) ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics 83:349–360

    Article  PubMed  CAS  Google Scholar 

  8. Kirmizis A, Farnham PJ (2004) Genomic approaches that aid in the identification of transcription factor target genes. Exp Biol Med (Maywood) 229:705–721

    CAS  Google Scholar 

  9. Euskirchen GM, Rozowsky JS, Wei CL et al (2007) Mapping of transcription factor binding regions in mammalian cells by ChIP: comparison of array- and sequencing-based technologies. Genome Res 17:898–909

    Article  PubMed  CAS  Google Scholar 

  10. Johnson DS, Mortazavi A, Myers RM et al (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316:1497–1502

    Article  PubMed  CAS  Google Scholar 

  11. Los GV, Encell LP, McDougall MG et al (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3:373–382

    Article  PubMed  CAS  Google Scholar 

  12. Urh M, Hartzell D, Mendez J et al (2008) Methods for detection of protein-protein and protein-DNA interactions using HaloTag. Methods Mol Biol 421:191–209

    PubMed  CAS  Google Scholar 

  13. Hartzell DD, Trinklein ND, Mendez J et al (2009) A functional analysis of the CREB signaling pathway using HaloCHIP-chip and high throughput reporter assays. BMC Genomics 10:497–512

    Article  PubMed  Google Scholar 

  14. Ohana RF, Encell LP, Zhao K et al (2009) HaloTag7: a genetically engineered tag that enhances bacterial expression of soluble proteins and improves protein purification. Protein Expr Purif 68:110–120

    Article  PubMed  CAS  Google Scholar 

  15. Ohana RF, Hurst R, Vidugiriene J et al (2011) HaloTag-based purification of functional human kinases from mammalian cells. Protein Expr Purif 76:154–164

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Daniels, D.L., Urh, M. (2013). Isolation of Intracellular Protein – DNA Complexes Using HaloCHIP, an Antibody-Free Alternative to Chromatin Immunoprecipitation. In: Bina, M. (eds) Gene Regulation. Methods in Molecular Biology, vol 977. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-284-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-284-1_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-283-4

  • Online ISBN: 978-1-62703-284-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics