Skip to main content

Genomic Profiling of Mantle Cell Lymphoma

  • Protocol
  • First Online:
Book cover Array Comparative Genomic Hybridization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 973))

Abstract

Genomic profiling of mantle cell lymphoma (MCL) cells has enabled a better understanding of the complex mechanisms underlying the pathogenesis of disease. Besides the t(11;14)(q13;q32) leading to cyclin D1 overexpression, MCL exhibits a characteristic pattern of DNA copy number aberrations that differs from those detected in other B-cell lymphomas. These genomic changes disrupt selected oncogenes and suppressor genes that are required for lymphoma development and progression, many of which are components of cell cycle, DNA damage response and repair, apoptosis, and cell-signaling pathways. Additionally, some of them may represent effective therapeutic targets. A number of genomic and molecular abnormalities have been correlated with the clinical outcome of patients with MCL and are considered prognostic factors. However, only a few genomic markers have been shown to predict the response to current or novel targeted therapies. One representative example is the high-level amplification of the BCL2 gene, which predicts a good response to pro-apoptotic BH3 mimetic drugs. In summary, genomic analyses have contributed to the substantial advances made in the comprehension of the pathogenesis of MCL, providing a solid basis for the identification of optimal therapeutic targets and for the design of new molecular therapies aiming to cure this fatal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swerlow SH, Berger F, Isaacson P, Muller-Hermelink HK, Nathwani BN, Piris MA, Harris NL (2001) Mantle cell lymphoma. World Health Organization Classification of tumors pathology and genetics of tumours of haematopoietic and lymphoid tissues:168–170

    Google Scholar 

  2. Orchard J, Garand R, Davis Z et al (2003) A subset of t(11;14) lymphoma with mantle cell features displays mutated igvh genes and includes patients with good prognosis, nonnodal disease. Blood 101(12):4975–4981. doi:10.1182/blood-2002-06-1864 2002-06-1864 [pii]

    Article  PubMed  CAS  Google Scholar 

  3. Rubio-Moscardo F, Climent J, Siebert R et al (2005) Mantle-cell lymphoma genotypes identified with cgh to bac microarrays define a leukemic subgroup of disease and predict patient outcome. Blood 105(11):4445–4454. doi:2004-10-3907 [pii] 10.1182/blood-2004-10-3907

    Article  PubMed  CAS  Google Scholar 

  4. Fernandez V, Salamero O, Espinet B et al (2010) Genomic and gene expression profiling defines indolent forms of mantle cell lymphoma. Cancer Res 70(4):1408–1418. doi:0008-5472.CAN-09-3419 [pii] 10.1158/0008-5472.CAN-09-3419

    Article  PubMed  CAS  Google Scholar 

  5. Dreyling M, Hiddemann W (2008) Dose-intense treatment of mantle cell lymphoma: can durable remission be achieved? Curr Opin Oncol 20(5):487–494. doi:10.1097/CCO.0b013e32830b61c2 00001622-200809000-00002 [pii]

    Article  PubMed  CAS  Google Scholar 

  6. Witzig TE (2005) Current treatment approaches for mantle-cell lymphoma. J Clin Oncol 23(26):6409–6414. doi:23/26/6409 [pii] 10.1200/JCO.2005.55.017

    Article  PubMed  CAS  Google Scholar 

  7. O’connor OA (2007) Mantle cell lymphoma: identifying novel molecular targets in growth and survival pathways. Hematology Am Soc Hematol Educ Program:270–276. doi: 2007/1/270 [pii] 10.1182/asheducation-2007.1.270

    Google Scholar 

  8. Leonard JP, Williams ME, Goy A et al (2009) Mantle cell lymphoma: biological insights and treatment advances. Clin Lymphoma Myeloma 9(4):267–277. doi:11G5T6V781XQ3127 [pii] 10.3816/CLM.2009.n.055

    Article  PubMed  CAS  Google Scholar 

  9. Campo E, Raffeld M, Jaffe ES (1999) Mantle-cell lymphoma. Semin Hematol 36(2):115–127

    PubMed  CAS  Google Scholar 

  10. Rosenberg CL, Wong E, Petty EM et al (1991) Prad1, a candidate bcl1 oncogene: mapping and expression in centrocytic lymphoma. Proc Natl Acad Sci USA 88(21):9638–9642

    Article  PubMed  CAS  Google Scholar 

  11. Bosch F, Jares P, Campo E et al (1994) Prad-1/cyclin d1 gene overexpression in chronic lymphoproliferative disorders: a highly specific marker of mantle cell lymphoma. Blood 84(8):2726–2732

    PubMed  CAS  Google Scholar 

  12. Wlodarska I, Meeus P, Stul M et al (2004) Variant t(2;11)(p11;q13) associated with the igk-ccnd1 rearrangement is a recurrent translocation in leukemic small-cell b-non-hodgkin lymphoma. Leukemia 18(10):1705–1710. doi:10.1038/sj.leu.2403459 2403459 [pii]

    Article  PubMed  CAS  Google Scholar 

  13. Komatsu H, Iida S, Yamamoto K et al (1994) A variant chromosome translocation at 11q13 identifying prad1/cyclin d1 as the bcl-1 gene. Blood 84(4):1226–1231

    PubMed  CAS  Google Scholar 

  14. Rocha CK, Praulich I, Gehrke I et al (2011) A rare case of t(11;22) in a mantle cell lymphoma like b-cell neoplasia resulting in a fusion of igl and ccnd1: case report. Mol Cytogenet 4(1):8. doi:1755-8166-4-8 [pii] 10.1186/1755-8166-4-8

    Article  PubMed  Google Scholar 

  15. Espinet B, Salaverria I, Bea S et al (2010) Incidence and prognostic impact of secondary cytogenetic aberrations in a series of 145 patients with mantle cell lymphoma. Genes Chromosomes Cancer 49(5):439–451. doi:10.1002/gcc.20754

    PubMed  CAS  Google Scholar 

  16. Gruszka-Westwood AM, Atkinson S, Summersgill BM et al (2002) Unusual case of leukemic mantle cell lymphoma with amplified ccnd1/igh fusion gene. Genes Chromosomes Cancer 33(2):206–212. doi:10.1002/gcc.1216 [pii]

    Article  PubMed  CAS  Google Scholar 

  17. Ott G, Kalla J, Ott MM et al (1997) Blastoid variants of mantle cell lymphoma: frequent bcl-1 rearrangements at the major translocation cluster region and tetraploid chromosome clones. Blood 89(4):1421–1429

    PubMed  CAS  Google Scholar 

  18. Kramer A, Schweizer S, Neben K et al (2003) Centrosome aberrations as a possible mechanism for chromosomal instability in non-hodgkin’s lymphoma. Leukemia 17(11):2207–2213. doi:10.1038/sj.leu.2403142 2403142 [pii]

    Article  PubMed  CAS  Google Scholar 

  19. Neben K, Ott G, Schweizer S et al (2007) Expression of centrosome-associated gene products is linked to tetraploidization in mantle cell lymphoma. Int J Cancer 120(8):1669–1677. doi:10.1002/ijc.22404

    Article  PubMed  CAS  Google Scholar 

  20. Tirier C, Zhang Y, Plendl H et al (1996) Simultaneous presence of t(11;14) and a variant burkitt’s translocation in the terminal phase of a mantle cell lymphoma. Leukemia 10(2):346–350

    PubMed  CAS  Google Scholar 

  21. Vaishampayan UN, Mohamed AN, Dugan MC et al (2001) Blastic mantle cell lymphoma associated with burkitt-type translocation and hypodiploidy. Br J Haematol 115(1):66–68. doi:3056 [pii]

    Article  PubMed  CAS  Google Scholar 

  22. Hao S, Sanger W, Onciu M et al (2002) Mantle cell lymphoma with 8q24 chromosomal abnormalities: a report of 5 cases with blastoid features. Mod Pathol 15(12):1266–1272. doi:10.1097/01.MP.0000037310.82136.99

    Article  PubMed  Google Scholar 

  23. Michaux L, Wlodarska I, Theate I et al (2004) Coexistence of bcl1/ccnd1 and cmyc aberrations in blastoid mantle cell lymphoma: a rare finding associated with very poor outcome. Ann Hematol 83(9):578–583. doi:10.1007/s00277-004-0879-2

    Article  PubMed  CAS  Google Scholar 

  24. Oliveira FM, Tone LG, Simoes BP et al (2007) Blastoid mantle cell lymphoma with t(2;8) (p12;q24). Leuk Lymphoma 48(10):2079–2082. doi:782725470 [pii] 10.1080/10428190701606834

    Article  PubMed  CAS  Google Scholar 

  25. Rosenwald A, Wright G, Wiestner A et al (2003) The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell 3(2):185–197. doi:S153561080300028X [pii]

    Article  PubMed  CAS  Google Scholar 

  26. Hinds PW, Dowdy SF, Eaton EN et al (1994) Function of a human cyclin gene as an oncogene. Proc Natl Acad Sci USA 91(2):709–713

    Article  PubMed  CAS  Google Scholar 

  27. Lovec H, Grzeschiczek A, Kowalski MB et al (1994) Cyclin d1/bcl-1 cooperates with myc genes in the generation of b-cell lymphoma in transgenic mice. EMBO J 13(15):3487–3495

    PubMed  CAS  Google Scholar 

  28. Bodrug SE, Warner BJ, Bath ML et al (1994) Cyclin d1 transgene impedes lymphocyte maturation and collaborates in lymphomagenesis with the myc gene. EMBO J 13(9):2124–2130

    PubMed  CAS  Google Scholar 

  29. Gladden AB, Woolery R, Aggarwal P et al (2006) Expression of constitutively nuclear cyclin d1 in murine lymphocytes induces b-cell lymphoma. Oncogene 25(7):998–1007. doi:1209147 [pii] 10.1038/sj.onc.1209147

    Article  PubMed  CAS  Google Scholar 

  30. Beltran E, Fresquet V, Martinez-Useros J et al (2011) A cyclin-d1 interaction with bax underlies its oncogenic role and potential as a therapeutic target in mantle cell lymphoma. Proc Natl Acad Sci USA 108(30):12461–12466. doi:1018941108 [pii] 10.1073/pnas.1018941108

    Article  PubMed  CAS  Google Scholar 

  31. Wong KK, Tsang YT, Shen J et al (2004) Allelic imbalance analysis by high-density single-nucleotide polymorphic allele (snp) array with whole genome amplified DNA. Nucleic Acids Res 32(9):e69. doi:10.1093/nar/gnh072 32/9/e69 [pii]

    Article  PubMed  CAS  Google Scholar 

  32. Cutler DJ, Zwick ME, Carrasquillo MM et al (2001) High-throughput variation detection and genotyping using microarrays. Genome Res 11(11):1913–1925. doi:10.1101/gr.197201

    PubMed  CAS  Google Scholar 

  33. Ishkanian AS, Malloff CA, Watson SK et al (2004) A tiling resolution DNA microarray with complete coverage of the human genome. Nat Genet 36(3):299–303. doi:10.1038/ng1307 ng1307 [pii]

    Article  PubMed  CAS  Google Scholar 

  34. Snijders AM, Nowak N, Segraves R et al (2001) Assembly of microarrays for genome-wide measurement of DNA copy number. Nat Genet 29(3):263–264. doi:10.1038/ng754 ng754 [pii]

    Article  PubMed  CAS  Google Scholar 

  35. Pollack JR, Perou CM, Alizadeh AA et al (1999) Genome-wide analysis of DNA copy-number changes using cdna microarrays. Nat Genet 23(1):41–46. doi:10.1038/12640

    Article  PubMed  CAS  Google Scholar 

  36. Kallioniemi A, Kallioniemi OP, Sudar D et al (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258(5083):818–821

    Article  PubMed  CAS  Google Scholar 

  37. Pinkel D, Segraves R, Sudar D et al (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20(2):207–211. doi:10.1038/2524

    Article  PubMed  CAS  Google Scholar 

  38. Pinkel D, Albertson DG (2005) Comparative genomic hybridization. Annu Rev Genomics Hum Genet 6:331–354. doi:10.1146/annurev.genom.6.080604.162140

    Article  PubMed  CAS  Google Scholar 

  39. Pinkel D, Albertson DG (2005) Array comparative genomic hybridization and its applications in cancer. Nat Genet 37(Suppl):S11–S17. doi:ng1569 [pii] 10.1038/ng1569

    Article  PubMed  CAS  Google Scholar 

  40. Royo C, Salaverria I, Hartmann EM et al (2011) The complex landscape of genetic alterations in mantle cell lymphoma. Semin Cancer Biol 21(5):322–334. doi:S1044-579X(11)00056-3 [pii] 10.1016/j.semcancer.2011.09.007

    Article  PubMed  CAS  Google Scholar 

  41. Fernandez V, Hartmann E, Ott G et al (2005) Pathogenesis of mantle-cell lymphoma: all oncogenic roads lead to dysregulation of cell cycle and DNA damage response pathways. J Clin Oncol 23(26):6364–6369. doi:23/26/6364 [pii] 10.1200/JCO.2005.05.019

    Article  PubMed  CAS  Google Scholar 

  42. Jares P, Colomer D, Campo E (2007) Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. Nat Rev Cancer 7(10):750–762. doi:nrc2230 [pii] 10.1038/nrc2230

    Article  PubMed  CAS  Google Scholar 

  43. Perez-Galan P, Dreyling M, Wiestner A (2010) Mantle cell lymphoma: biology, pathogenesis, and the molecular basis of treatment in the genomic era. Blood 117(1):26–38. doi:blood-2010-04-189977 [pii] 10.1182/blood-2010-04-189977

    Article  PubMed  CAS  Google Scholar 

  44. Monni O, Oinonen R, Elonen E et al (1998) Gain of 3q and deletion of 11q22 are frequent aberrations in mantle cell lymphoma. Genes Chromosomes Cancer 21(4):298–307. doi:10.1002/ (SICI)1098-2264(199804) 21:4<298: : AID-GCC3>3.0.CO;2-U [pii]

    Article  PubMed  CAS  Google Scholar 

  45. Bea S, Ribas M, Hernandez JM et al (1999) Increased number of chromosomal imbalances and high-level DNA amplifications in mantle cell lymphoma are associated with blastoid variants. Blood 93(12):4365–4374

    PubMed  CAS  Google Scholar 

  46. Cuneo A, Bigoni R, Rigolin GM et al (1999) Cytogenetic profile of lymphoma of follicle mantle lineage: correlation with clinicobiologic features. Blood 93(4):1372–1380

    PubMed  CAS  Google Scholar 

  47. Bentz M, Plesch A, Bullinger L et al (2000) T(11;14)-positive mantle cell lymphomas exhibit complex karyotypes and share similarities with b-cell chronic lymphocytic leukemia. Genes Chromosomes Cancer 27(3):285–294. doi:10.1002/ (SICI)1098-2264(200003) 27:3<285::AID-GCC9>3.0.CO;2-M [pii]

    Article  PubMed  CAS  Google Scholar 

  48. Bigoni R, Cuneo A, Milani R et al (2001) Secondary chromosome changes in mantle cell lymphoma: cytogenetic and fluorescence in situ hybridization studies. Leuk Lymphoma 40(5–6):581–590. doi:10.3109/10428190109097656

    Article  PubMed  CAS  Google Scholar 

  49. Martinez-Climent JA, Vizcarra E, Sanchez D et al (2001) Loss of a novel tumor suppressor gene locus at chromosome 8p is associated with leukemic mantle cell lymphoma. Blood 98(12):3479–3482

    Article  PubMed  CAS  Google Scholar 

  50. Allen JE, Hough RE, Goepel JR et al (2002) Identification of novel regions of amplification and deletion within mantle cell lymphoma DNA by comparative genomic hybridization. Br J Haematol 116(2):291–298. doi:3260 [pii]

    Article  PubMed  CAS  Google Scholar 

  51. Bea S, Tort F, Pinyol M et al (2001) Bmi-1 gene amplification and overexpression in hematological malignancies occur mainly in mantle cell lymphomas. Cancer Res 61(6):2409–2412

    PubMed  CAS  Google Scholar 

  52. Hernandez L, Bea S, Pinyol M et al (2005) Cdk4 and mdm2 gene alterations mainly occur in highly proliferative and aggressive mantle cell lymphomas with wild-type ink4a/arf locus. Cancer Res 65(6):2199–2206. doi:65/6/2199 [pii] 10.1158/0008-5472.CAN-04-1526

    Article  PubMed  CAS  Google Scholar 

  53. Pinyol M, Hernandez L, Cazorla M et al (1997) Deletions and loss of expression of p16ink4a and p21waf1 genes are associated with aggressive variants of mantle cell lymphomas. Blood 89(1):272–280

    PubMed  CAS  Google Scholar 

  54. Dreyling MH, Bullinger L, Ott G et al (1997) Alterations of the cyclin d1/p16-prb pathway in mantle cell lymphoma. Cancer Res 57(20):4608–4614

    PubMed  CAS  Google Scholar 

  55. Greiner TC, Dasgupta C, Ho VV et al (2006) Mutation and genomic deletion status of ataxia telangiectasia mutated (atm) and p53 confer specific gene expression profiles in mantle cell lymphoma. Proc Natl Acad Sci USA 103(7):2352–2357. doi:0510441103 [pii] 10.1073/pnas.0510441103

    Article  PubMed  CAS  Google Scholar 

  56. Salaverria I, Zettl A, Bea S et al (2007) Specific secondary genetic alterations in mantle cell lymphoma provide prognostic information independent of the gene expression-based proliferation signature. J Clin Oncol 25(10):1216–1222. doi:JCO.2006.08.4251 [pii] 10.1200/JCO.2006.08.4251

    Article  PubMed  CAS  Google Scholar 

  57. Stilgenbauer S, Winkler D, Ott G et al (1999) Molecular characterization of 11q deletions points to a pathogenic role of the atm gene in mantle cell lymphoma. Blood 94(9):3262–3264

    PubMed  CAS  Google Scholar 

  58. Hartmann EM, Campo E, Wright G et al (2010) Pathway discovery in mantle cell lymphoma by integrated analysis of high-resolution gene expression and copy number profiling. Blood 116(6):953–961. doi:blood-2010-01-263806 [pii] 10.1182/blood-2010-01-263806

    Article  PubMed  CAS  Google Scholar 

  59. Camacho E, Hernandez L, Hernandez S et al (2002) Atm gene inactivation in mantle cell lymphoma mainly occurs by truncating mutations and missense mutations involving the phosphatidylinositol-3 kinase domain and is associated with increasing numbers of chromosomal imbalances. Blood 99(1):238–244

    Article  PubMed  CAS  Google Scholar 

  60. Greiner TC, Moynihan MJ, Chan WC et al (1996) P53 mutations in mantle cell lymphoma are associated with variant cytology and predict a poor prognosis. Blood 87(10):4302–4310

    PubMed  CAS  Google Scholar 

  61. Kohlhammer H, Schwaenen C, Wessendorf S et al (2004) Genomic DNA-chip hybridization in t(11;14)-positive mantle cell lymphomas shows a high frequency of aberrations and allows a refined characterization of consensus regions. Blood 104(3):795–801. doi:10.1182/blood-2003-12-4175 2003-12-4175 [pii]

    Article  PubMed  CAS  Google Scholar 

  62. Schrader C, Janssen D, Klapper W et al (2005) Minichromosome maintenance protein 6, a proliferation marker superior to ki-67 and independent predictor of survival in patients with mantle cell lymphoma. Br J Cancer 93(8):939–945. doi:6602795 [pii] 10.1038/sj.bjc.6602795

    Article  PubMed  CAS  Google Scholar 

  63. Tagawa H, Karnan S, Suzuki R et al (2005) Genome-wide array-based cgh for mantle cell lymphoma: identification of homozygous deletions of the proapoptotic gene bim. Oncogene 24(8):1348–1358. doi:1208300 [pii] 10.1038/sj.onc.1208300

    Article  PubMed  CAS  Google Scholar 

  64. Flordal Thelander E, Ichimura K, Collins VP et al (2007) Detailed assessment of copy number alterations revealing homozygous deletions in 1p and 13q in mantle cell lymphoma. Leuk Res 31(9):1219–1230. doi:S0145-2126(06)00415-2 [pii] 10.1016/j.leukres.2006.10.022

    Article  PubMed  CAS  Google Scholar 

  65. De Leeuw RJ, Davies JJ, Rosenwald A et al (2004) Comprehensive whole genome array cgh profiling of mantle cell lymphoma model genomes. Hum Mol Genet 13(17):1827–1837. doi:10.1093/hmg/ddh195 ddh195 [pii]

    Article  PubMed  Google Scholar 

  66. Nielander I, Martin-Subero JI, Wagner F et al (2006) Partial uniparental disomy: a recurrent genetic mechanism alternative to chromosomal deletion in malignant lymphoma. Leukemia 20(5):904–905. doi:2404173 [pii] 10.1038/sj.leu.2404173

    Article  CAS  Google Scholar 

  67. Rinaldi A, Kwee I, Taborelli M et al (2006) Genomic and expression profiling identifies the b-cell associated tyrosine kinase syk as a possible therapeutic target in mantle cell lymphoma. Br J Haematol 132(3):303–316. doi:BJH5883 [pii] 10.1111/j.1365-2141.2005.05883.x

    Article  PubMed  CAS  Google Scholar 

  68. Vater I, Wagner F, Kreuz M et al (2009) Genechip analyses point to novel pathogenetic mechanisms in mantle cell lymphoma. Br J Haematol 144(3):317–331. doi:BJH7443 [pii] 10.1111/j.1365-2141.2008.07443.x

    Article  PubMed  CAS  Google Scholar 

  69. Bea S, Salaverria I, Armengol L et al (2009) Uniparental disomies, homozygous deletions, amplifications, and target genes in mantle cell lymphoma revealed by integrative high-resolution whole-genome profiling. Blood 113(13):3059–3069. doi:blood-2008-07-170183 [pii] 10.1182/blood-2008-07-170183

    Article  PubMed  CAS  Google Scholar 

  70. Kawamata N, Ogawa S, Gueller S et al (2009) Identified hidden genomic changes in mantle cell lymphoma using high-resolution single nucleotide polymorphism genomic array. Exp Hematol 37(8):937–946. doi:S0301-472X(09)00175-1 [pii] 10.1016/j.exphem. 2009.04.012

    Article  PubMed  CAS  Google Scholar 

  71. Halldorsdottir AM, Sander B, Goransson H et al (2011) High-resolution genomic screening in mantle cell lymphoma–specific changes correlate with genomic complexity, the proliferation signature and survival. Genes Chromosomes Cancer 50(2):113–121. doi:10.1002/gcc.20836

    Article  PubMed  CAS  Google Scholar 

  72. Mestre-Escorihuela C, Rubio-Moscardo F, Richter JA et al (2007) Homozygous deletions localize novel tumor suppressor genes in b-cell lymphomas. Blood 109(1):271–280. doi:blood-2006-06-026500 [pii] 10.1182/blood-2006-06-026500

    Article  PubMed  CAS  Google Scholar 

  73. Rubio-Moscardo F, Blesa D, Mestre C et al (2005) Characterization of 8p21.3 chromosomal deletions in b-cell lymphoma: trail-r1 and trail-r2 as candidate dosage-dependent tumor suppressor genes. Blood 106(9):3214–3222. doi:2005-05-2013 [pii] 10.1182/blood-2005-05-2013

    Article  PubMed  CAS  Google Scholar 

  74. Pinyol M, Bea S, Pla L et al (2007) Inactivation of rb1 in mantle-cell lymphoma detected by nonsense-mediated mrna decay pathway inhibition and microarray analysis. Blood 109(12):5422–5429. doi:blood-2006-11-057208 [pii] 10.1182/blood-2006-11-057208

    Article  PubMed  CAS  Google Scholar 

  75. Kato M, Sanada M, Kato I et al (2009) Frequent inactivation of a20 in b-cell lymphomas. Nature 459(7247):712–716. doi:nature07969 [pii] 10.1038/nature07969

    Article  PubMed  CAS  Google Scholar 

  76. Honma K, Tsuzuki S, Nakagawa M et al (2009) Tnfaip3/a20 functions as a novel tumor suppressor gene in several subtypes of non-hodgkin lymphomas. Blood 114(12):2467–2475. doi:blood-2008-12-194852 [pii] 10.1182/blood-2008-12-194852

    Article  PubMed  CAS  Google Scholar 

  77. Navarro A, Bea S, Fernandez V et al (2009) Microrna expression, chromosomal alterations, and immunoglobulin variable heavy chain hypermutations in mantle cell lymphomas. Cancer Res 69(17):7071–7078. doi:0008-5472.CAN-09-1095 [pii] 10.1158/0008-5472.CAN-09-1095

    Article  PubMed  CAS  Google Scholar 

  78. Mao X, Young BD, Lu YJ (2007) The application of single nucleotide polymorphism microarrays in cancer research. Curr Genomics 8(4):219–228

    Article  PubMed  CAS  Google Scholar 

  79. Gondek LP, Tiu R, O’keefe CL et al (2008) Chromosomal lesions and uniparental disomy detected by snp arrays in mds, mds/mpd, and mds-derived aml. Blood 111(3):1534–1542. doi:blood-2007-05-092304 [pii] 10.1182/blood-2007-05-092304

    Article  PubMed  CAS  Google Scholar 

  80. Beroukhim R, Lin M, Park Y et al (2006) Inferring loss-of-heterozygosity from unpaired tumors using high-density oligonucleotide snp arrays. PLoS Comput Biol 2(5):e41. doi:10.1371/journal.pcbi.0020041

    Article  PubMed  Google Scholar 

  81. Lo KC, Bailey D, Burkhardt T et al (2008) Comprehensive analysis of loss of heterozygosity events in glioblastoma using the 100 k snp mapping arrays and comparison with copy number abnormalities defined by bac array comparative genomic hybridization. Genes Chromosomes Cancer 47(3):221–237. doi: 10.1002/gcc.20524

    Article  PubMed  CAS  Google Scholar 

  82. Fitzgibbon J, Smith LL, Raghavan M et al (2005) Association between acquired uniparental disomy and homozygous gene mutation in acute myeloid leukemias. Cancer Res 65(20):9152–9154. doi:65/20/9152 [pii] 10.1158/0008-5472.CAN-05-2017

    Article  PubMed  CAS  Google Scholar 

  83. Stephens PJ, Mcbride DJ, Lin ML et al (2009) Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 462(7276):1005–1010. doi:nature08645 [pii] 10.1038/nature08645

    Article  PubMed  CAS  Google Scholar 

  84. Stephens PJ, Greenman CD, Fu B et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144(1):27–40. doi:S0092-8674(10)01377-2 [pii] 10.1016/j.cell.2010.11.055

    Article  PubMed  CAS  Google Scholar 

  85. Coquelle A, Pipiras E, Toledo F et al (1997) Expression of fragile sites triggers intrachromosomal mammalian gene amplification and sets boundaries to early amplicons. Cell 89(2):215–225. doi:S0092-8674(00)80201-9 [pii]

    Article  PubMed  CAS  Google Scholar 

  86. Fu K, Weisenburger DD, Greiner TC et al (2005) Cyclin d1-negative mantle cell lymphoma: a clinicopathologic study based on gene expression profiling. Blood 106(13):4315–4321. doi:2005-04-1753 [pii] 10.1182/blood-2005-04-1753

    Article  PubMed  CAS  Google Scholar 

  87. Gesk S, Klapper W, Martin-Subero JI et al (2006) A chromosomal translocation in cyclin d1-negative/cyclin d2-positive mantle cell lymphoma fuses the ccnd2 gene to the igk locus. Blood 108(3):1109–1110. doi:108/3/1109 [pii] 10.1182/blood-2006-01-0015

    Article  PubMed  CAS  Google Scholar 

  88. Shiller SM, Zieske A, Holmes H 3rd et al (2011) Cd5-positive, cyclind1-negative mantle cell lymphoma with a translocation involving the ccnd2 gene and the igl locus. Cancer Genet 204(3):162–164. doi:S0165-4608 (10)00479-6 [pii] 10.1016/j.cancergencyto.2010.08.016

    Article  PubMed  Google Scholar 

  89. Herens C, Lambert F, Quintanilla-Martinez L et al (2008) Cyclin d1-negative mantle cell lymphoma with cryptic t(12;14)(p13;q32) and cyclin d2 overexpression. Blood 111(3):1745–1746. doi:111/3/1745 [pii] 10.1182/blood-2007-10-120824

    Article  PubMed  CAS  Google Scholar 

  90. Shaughnessy J Jr, Gabrea A, Qi Y et al (2001) Cyclin d3 at 6p21 is dysregulated by recurrent chromosomal translocations to immunoglobulin loci in multiple myeloma. Blood 98(1):217–223

    Article  PubMed  CAS  Google Scholar 

  91. Sonoki T, Harder L, Horsman DE et al (2001) Cyclin d3 is a target gene of t(6;14)(p21.1;q32.3) of mature b-cell malignancies. Blood 98(9):2837–2844

    Article  PubMed  CAS  Google Scholar 

  92. Wlodarska I, Dierickx D, Vanhentenrijk V et al (2008) Translocations targeting ccnd2, ccnd3, and mycn do occur in t(11;14)-negative mantle cell lymphomas. Blood 111(12):5683–5690. doi:blood-2007-10-118794 [pii] 10.1182/blood-2007-10-118794

    Article  PubMed  CAS  Google Scholar 

  93. Mozos A, Royo C, Hartmann E et al (2009) Sox11 expression is highly specific for mantle cell lymphoma and identifies the cyclin d1-negative subtype. Haematologica 94(11):1555–1562. doi:94/11/1555 [pii] 10.3324/haematol.2009.010264

    Article  PubMed  CAS  Google Scholar 

  94. Ek S, Dictor M, Jerkeman M et al (2008) Nuclear expression of the non b-cell lineage sox11 transcription factor identifies mantle cell lymphoma. Blood 111(2):800–805. doi:blood-2007-06-093401 [pii] 10.1182/blood-2007-06-093401

    Article  PubMed  CAS  Google Scholar 

  95. Martin P, Chadburn A, Christos P et al (2009) Outcome of deferred initial therapy in mantle-cell lymphoma. J Clin Oncol 27(8):1209–1213. doi:JCO.2008.19.6121 [pii] 10.1200/JCO.2008.19.6121

    Article  PubMed  Google Scholar 

  96. Ondrejka SL, Lai R, Smith SD et al (2011) Indolent mantle cell leukemia: a clinicopathological variant characterized by isolated lymphocytosis, interstitial bone marrow involvement, kappa light chain restriction, and good prognosis. Haematologica 96(8):1121–1127. doi:haematol.2010.036277 [pii] 10.3324/haematol.2010.036277

    Article  PubMed  Google Scholar 

  97. Eve HE, Furtado MV, Hamon MD et al (2009) Time to treatment does not in-fluence overall survival in newly diagnosed mantle-cell lymphoma. J Clin Oncol 27(32):e189–e190. doi:JCO.2009.23.9731 [pii] 10.1200/JCO.2009.23.9731, author reply e191

    Article  PubMed  Google Scholar 

  98. Zhang Y, Xiong Y, Yarbrough WG (1998) Arf promotes mdm2 degradation and stabilizes p53: Arf-ink4a locus deletion impairs both the rb and p53 tumor suppression pathways. Cell 92(6):725–734. doi:S0092-8674(00)81401-4 [pii]

    Article  PubMed  CAS  Google Scholar 

  99. Serrano M, Hannon GJ, Beach D (1993) A new regulatory motif in cell-cycle control causing specific inhibition of cyclin d/cdk4. Nature 366(6456):704–707. doi:10.1038/ 366704a0

    Article  PubMed  CAS  Google Scholar 

  100. Jacobs JJ, Scheijen B, Voncken JW et al (1999) Bmi-1 collaborates with c-myc in tumorigenesis by inhibiting c-myc-induced apoptosis via ink4a/arf. Genes Dev 13(20): 2678–2690

    Article  PubMed  CAS  Google Scholar 

  101. Salaverria I, Espinet B, Carrio A et al (2008) Multiple recurrent chromosomal breakpoints in mantle cell lymphoma revealed by a combination of molecular cytogenetic techniques. Genes Chromosomes Cancer 47(12):1086–1097. doi:10.1002/gcc.20609

    Article  PubMed  CAS  Google Scholar 

  102. Tort F, Hernandez S, Bea S et al (2005) Checkpoint kinase 1 (chk1) protein and mrna expression is downregulated in aggressive variants of human lymphoid neoplasms. Leukemia 19(1):112–117. doi:2403571 [pii] 10.1038/sj.leu.2403571

    PubMed  CAS  Google Scholar 

  103. Tort F, Hernandez S, Bea S et al (2002) Chk2-decreased protein expression and infrequent genetic alterations mainly occur in aggressive types of non-hodgkin lymphomas. Blood 100(13):4602–4608. doi:10.1182/blood-2002-04-1078 2002-04-1078 [pii]

    Article  PubMed  CAS  Google Scholar 

  104. Hernandez L, Hernandez S, Bea S et al (1999) C-myc mrna expression and genomic alterations in mantle cell lymphomas and other nodal non-Hodgkin’s lymphomas. Leukemia 13(12):2087–2093

    Article  PubMed  CAS  Google Scholar 

  105. Chen RW, Bemis LT, Amato CM et al (2008) Truncation in ccnd1 mrna alters mir-16-1 regulation in mantle cell lymphoma. Blood 112(3):822–829. doi:blood-2008-03-142182 [pii] 10.1182/blood-2008-03-142182

    Article  PubMed  CAS  Google Scholar 

  106. He L, Thomson JM, Hemann MT et al (2005) A microrna polycistron as a potential human oncogene. Nature 435(7043):828–833. doi:nature03552 [pii] 10.1038/nature03552

    Article  PubMed  CAS  Google Scholar 

  107. Parry-Jones N, Matutes E, Morilla R et al (2007) Cytogenetic abnormalities additional to t(11;14) correlate with clinical features in leukaemic presentation of mantle cell lymphoma, and may influence prognosis: a study of 60 cases by fish. Br J Haematol 137(2):117–124. doi:BJH6526 [pii] 10.1111/j.1365-2141.2007.06526.x

    Article  PubMed  CAS  Google Scholar 

  108. Katzenberger T, Kienle D, Stilgenbauer S et al (2008) Delineation of distinct tumour profiles in mantle cell lymphoma by detailed cytogenetic, interphase genetic and morphological analysis. Br J Haematol 142(4):538–550. doi:BJH7199 [pii] 10.1111/j.1365-2141.2008.07199.x

    Article  PubMed  Google Scholar 

  109. Nagy B, Lundan T, Larramendy ML et al (2003) Abnormal expression of apoptosis-related genes in haematological malignancies: overexpression of myc is poor prognostic sign in mantle cell lymphoma. Br J Haematol 120(3):434–441. doi:4121 [pii]

    Article  PubMed  CAS  Google Scholar 

  110. Schaffner C, Idler I, Stilgenbauer S et al (2000) Mantle cell lymphoma is characterized by inactivation of the atm gene. Proc Natl Acad Sci USA 97(6):2773–2778. doi:10.1073/pnas.050400997 050400997 [pii]

    Article  PubMed  CAS  Google Scholar 

  111. Tabe Y, Sebasigari D, Jin L et al (2009) Mdm2 antagonist nutlin-3 displays antiproliferative and proapoptotic activity in mantle cell lymphoma. Clin Cancer Res 15(3):933–942. doi:15/3/933 [pii] 10.1158/1078-0432.CCR-08-0399

    Article  PubMed  CAS  Google Scholar 

  112. Marzec M, Kasprzycka M, Lai R et al (2006) Mantle cell lymphoma cells express predominantly cyclin d1a isoform and are highly sensitive to selective inhibition of cdk4 kinase activity. Blood 108(5):1744–1750. doi:blood-2006-04-016634 [pii] 10.1182/blood-2006-04-016634

    Article  PubMed  CAS  Google Scholar 

  113. Kridel R, Meissner B, Rogic S et al (2012) Whole transcriptome sequencing reveals recurrent notch1 mutations in mantle cell lymphoma. Blood. doi:blood-2011-11-391474 [pii] 10.1182/blood-2011-11-391474

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose A. Martinez-Climent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Menanteau, M.R., Martinez-Climent, J.A. (2013). Genomic Profiling of Mantle Cell Lymphoma. In: Banerjee, D., Shah, S. (eds) Array Comparative Genomic Hybridization. Methods in Molecular Biology, vol 973. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-281-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-281-0_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-280-3

  • Online ISBN: 978-1-62703-281-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics