Skip to main content

Mycosis Fungoides and Sézary Syndrome

  • Protocol
  • First Online:
Array Comparative Genomic Hybridization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 973))

Abstract

The development of array comparative genomic hybridization (aCGH) techniques has allowed to characterize more precisely several human neoplasms with the aim of providing prognostic markers and targets for directed therapeutic intervention. Recently, several studies applying aCGH technique have been reported in which an exhaustive genetic characterization of mycosis fungoides (MF) and Sézary syndrome (SS) has been performed. Regarding MF, a genomic profile characterized by the gains of 7q, 17q, and 8q and losses in 9p, 13q, 17p, and 10q has been described. In SS, the most common abnormalities are gains in 8q and 17q and losses at 17p and 10q. One of the main contributions of the aCGH studies in MF and SS has been the description of genetic markers associated with a poor prognosis. In MF, three specific chromosomal regions, 9p21.3 (CDKN2A, CDKN2B, and MTAP), 8q24.21 (MYC), and 10q26qter (MGMT and EBF3) have been defined as prognostic markers exhibiting a significant correlation with overall survival (P = 0.042, P = 0.017, and P = 0.022, respectively). Moreover, two MF genomic subgroups have been described, distinguishing a stable group (0–5 DNA aberrations) and an unstable group (>5 DNA aberrations), showing that the genomic unstable group had a shorter overall survival (P = 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Criscione VD, Weinstock MA (2007) Incidence of cutaneous T-cell lymphoma in the United States, 1973–2002. Arch Dermatol 1437:854–859

    Article  Google Scholar 

  2. Willemze R, Jaffe ES, Burg G et al (2005) WHO-EORTC classification for cutaneous lymphomas. Blood 10510:3768–3785

    Article  Google Scholar 

  3. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H et al eds (2008) World Health Organization classification of tumours of haematopoietic and lymphoid tissues. IARC Press: Lyon

    Google Scholar 

  4. Kuzel TM, Roenigk HH Jr, Rosen ST (1991) Mycosis fungoides and the Sézary syndrome: a review of pathogenesis, diagnosis, and therapy. J Clin Oncol 97:1298–1313

    Google Scholar 

  5. Diamandidou E, Cohen PR, Kurzrock R (1996) Mycosis fungoides and Sézary syndrome. Blood 887:2385–2409

    Google Scholar 

  6. Harwix S, Gunzl HJ, Blaschke V, Zachmann K, Neumann C (2001) Inability to culture the dominant T-cell clone from the skin of primary cutaneous T-cell lymphoma as proven by TCR gamma-chain gene sequencing. Arch Dermatol Res 2933:139–146

    Article  Google Scholar 

  7. Karenko L, Hyytinen E, Sarna S, Ranki A (1997) Chromosomal abnormalities in cutaneous T-cell lymphoma and in its premalignant conditions as detected by G-banding and interphase cytogenetic methods. J Invest Dermatol 1081:22–29

    Article  Google Scholar 

  8. Batista DA, Vonderheid EC, Hawkins A et al (2006) Multicolor fluorescence in situ hybridization (SKY) in mycosis fungoides and Sézary syndrome: search for recurrent chromosome abnormalities. Genes Chromosomes Cancer 454:383–391

    Article  Google Scholar 

  9. Padilla-Nash HM, Wu K, Just H, Ried T, Thestrup-Pedersen K (2007) Spectral karyotyping demonstrates genetically unstable skin-homing T lymphocytes in cutaneous T-cell lymphoma. Exp Dermatol 162:98–103

    Article  Google Scholar 

  10. Karenko L, Kahkonen M, Hyytinen ER, Lindlof M, Ranki A (1999) Notable losses at specific regions of chromosomes 10q and 13q in the Sézary syndrome detected by comparative genomic hybridization. J Invest Dermatol 1123:392–395

    Article  Google Scholar 

  11. Mao X, Lillington D, Scarisbrick JJ et al (2002) Molecular cytogenetic analysis of cutaneous T-cell lymphomas: identification of common genetic alterations in Sézary syndrome and mycosis fungoides. Br J Dermatol 1473:464–475

    Article  Google Scholar 

  12. Fischer TC, Gellrich S, Muche JM et al (2004) Genomic aberrations and survival in cutaneous T cell lymphomas. J Invest Dermatol 1223:579–586

    Article  Google Scholar 

  13. Prochazkova M, Chevret E, Mainhaguiet G et al (2007) Common chromosomal abnormalities in mycosis fungoides transformation. Genes Chromosomes Cancer 469:828–838

    Article  Google Scholar 

  14. Sole F, Woessner S, Vallespi T et al (1995) Cytogenetic abnormalities in seven patients with the Sézary syndrome. Sangre (Barc) 405:431–433

    Google Scholar 

  15. Thangavelu M, Finn WG, Yelavarthi KK et al (1997) Recurring structural chromosome abnormalities in peripheral blood lymphocytes of patients with mycosis fungoides/Sézary syndrome. Blood 899:3371–3377

    Google Scholar 

  16. Mao X, Lillington DM, Czepulkowski B, Russell-Jones R, Young BD, Whittaker S (2003) Molecular cytogenetic characterization of Sézary syndrome. Genes Chromosomes Cancer 363:250–260

    Article  Google Scholar 

  17. Espinet B, Salido M, Pujol RM et al (2004) Genetic characterization of Sézary’s syndrome by conventional cytogenetics and cross-species color banding fluorescent in situ hybridization. Haematologica 892:165–173

    Google Scholar 

  18. Barba G, Matteucci C, Girolomoni G et al (2008) Comparative genomic hybridization identifies 17q11.2 approximately q12 duplication as an early event in cutaneous T-cell lymphomas. Cancer Genet Cytogenet 1841:48–51

    Article  Google Scholar 

  19. Karenko L, Sarna S, Kahkonen M, Ranki A (2003) Chromosomal abnormalities in relation to clinical disease in patients with cutaneous T-cell lymphoma: a 5-year follow-up study. Br J Dermatol 1481:55–64

    Article  Google Scholar 

  20. van Doorn R, van Kester MS, Dijkman R et al (2009) Oncogenomic analysis of mycosis fungoides reveals major differences with Sézary syndrome. Blood 1131:127–136

    Article  Google Scholar 

  21. Salgado R, Servitje O, Gallardo F et al (2010) Oligonucleotide array-CGH identifies genomic subgroups and prognostic markers for tumor stage mycosis fungoides. J Invest Dermatol 1304:1126–1135

    Article  Google Scholar 

  22. Laharanne E, Oumouhou N, Bonnet F et al (2010) Genome-wide analysis of cutaneous T-cell lymphomas identifies three clinically relevant classes. J Invest Dermatol 1306:1707–1718

    Article  Google Scholar 

  23. Vermeer MH, van Doorn R, Dijkman R et al (2008) Novel and highly recurrent chromosomal alterations in Sézary syndrome. Cancer Res 688:2689–2698

    Article  Google Scholar 

  24. Caprini E, Cristofoletti C, Arcelli D et al (2009) Identification of key regions and genes important in the pathogenesis of Sézary syndrome by combining genomic and expression microarrays. Cancer Res 6921:8438–8446

    Article  Google Scholar 

  25. Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 3966712:643–649

    Article  Google Scholar 

  26. Blaveri E, Brewer JL, Roydasgupta R et al (2005) Bladder cancer stage and outcome by array-based comparative genomic hybridization. Clin Cancer Res 1119(Pt 1):7012–7022

    Article  Google Scholar 

  27. Fridlyand J, Snijders AM, Ylstra B et al (2006) Breast tumor copy number aberration phenotypes and genomic instability. BMC Cancer 6:96

    Article  PubMed  Google Scholar 

  28. Ferreira BI, Alonso J, Carrillo J et al (2008) Array CGH and gene-expression profiling reveals distinct genomic instability patterns associated with DNA repair and cell-cycle checkpoint pathways in Ewing’s sarcoma. Oncogene 2714:2084–2090

    Article  Google Scholar 

  29. Ferreira BI, Garcia JF, Suela J et al (2008) Comparative genome profiling across subtypes of low-grade B-cell lymphoma identifies type-specific and common aberrations that target genes with a role in B-cell neoplasia. Haematologica 935:670–679

    Article  Google Scholar 

  30. Wlodarska I, Martin-Garcia N, Achten R et al (2002) Fluorescence in situ hybridization study of chromosome 7 aberrations in hepatosplenic T-cell lymphoma: Isochromosome 7q as a common abnormality accumulating in forms with features of cytologic progression. Genes Chromosomes Cancer 333:243–251

    Article  Google Scholar 

  31. Tamaska J, Adam E, Kozma A et al (2006) Hepatosplenic gamma delta T-cell lymphoma with ring chromosome 7, an isochromosome 7q equivalent clonal chromosomal aberration. Virchows Arch 4494:479–483

    Article  Google Scholar 

  32. Feldman AL, Law M, Grogg KL et al (2008) Incidence of TCR and TCL1 gene translocations and isochromosome 7q in peripheral T-cell lymphomas using fluorescence in situ hybridization. Am J Clin Pathol 1302:178–185

    Article  Google Scholar 

  33. Laharanne E, Chevret E, Idrissi Y et al (2010) CDKN2A-CDKN2B deletion defines an aggressive subset of cutaneous T-cell lymphoma. Mod Pathol 234:547–558

    Article  Google Scholar 

  34. Navas IC, Algara P, Mateo M et al (2002) p16(INK4a) is selectively silenced in the tumoral progression of mycosis fungoides. Lab Invest 822:123–132

    Google Scholar 

  35. Navas IC, Ortiz-Romero PL, Villuendas R et al (2000) p16(INK4a) gene alterations are frequent in lesions of mycosis fungoides. Am J Pathol 1565:1565–1572

    Article  Google Scholar 

  36. Nobori T, Takabayashi K, Tran P et al (1996) Genomic cloning of methylthioadenosine phosphorylase: a purine metabolic enzyme deficient in multiple different cancers. Proc Natl Acad Sci U S A 9312:6203–6208

    Article  Google Scholar 

  37. Dreyling MH, Roulston D, Bohlander SK, Vardiman J, Olopade OI (1998) Codeletion of CDKN2 and MTAP genes in a subset of non-Hodgkin’s lymphoma may be associated with histologic transformation from low-grade to diffuse large-cell lymphoma. Genes Chromosomes Cancer 221:72–78

    Article  Google Scholar 

  38. Christopher SA, Diegelman P, Porter CW, Kruger WD (2002) Methylthioadenosine phosphorylase, a gene frequently codeleted with p16(cdkN2a/ARF), acts as a tumor suppressor in a breast cancer cell line. Cancer Res 6222:6639–6644

    Google Scholar 

  39. Subhi AL, Tang B, Balsara BR et al (2004) Loss of methylthioadenosine phosphorylase and elevated ornithine decarboxylase is common in pancreatic cancer. Clin Cancer Res 1021:7290–7296

    Article  Google Scholar 

  40. Marce S, Balague O, Colomo L et al (2006) Lack of methylthioadenosine phosphorylase expression in mantle cell lymphoma is associated with shorter survival: Implications for a potential targeted therapy. Clin Cancer Res 1212:3754–3761

    Article  Google Scholar 

  41. Mirebeau D, Acquaviva C, Suciu S et al (2006) The prognostic significance of CDKN2A, CDKN2B and MTAP inactivation in B-lineage acute lymphoblastic leukemia of childhood. Results of the EORTC studies 58881 and 58951. Haematologica 917:881–885

    Google Scholar 

  42. Worsham MJ, Chen KM, Tiwari N et al (2006) Fine-mapping loss of gene architecture at the CDKN2B (p15INK4b), CDKN2A (p14ARF, p16INK4a), and MTAP genes in head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 1324:409–415

    Article  Google Scholar 

  43. Kadariya Y, Yin B, Tang B et al (2009) Mice heterozygous for germ-line mutations in methylthioadenosine phosphorylase (MTAP) die prematurely of T-cell lymphoma. Cancer Res 6914:5961–5969

    Article  Google Scholar 

  44. Meyer N, Kim SS, Penn LZ (2006) The Oscar-worthy role of myc in apoptosis. Semin Cancer Biol 164:275–287

    Article  Google Scholar 

  45. Vita M, Henriksson M (2006) The myc oncoprotein as a therapeutic target for human cancer. Semin Cancer Biol 164:318–330

    Article  Google Scholar 

  46. Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM (1982) Human c-myc oncogene is located on the region of ­chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA 7924:7824–7827

    Article  Google Scholar 

  47. Klapproth K, Wirth T (2010) Advances in the understanding of MYC-induced lymphomagenesis. Br J Haematol 1494:484–497

    Article  Google Scholar 

  48. Dezfouli S, Bakke A, Huang J, Wynshaw-Boris A, Hurlin PJ (2006) Inflammatory disease and lymphomagenesis caused by deletion of the myc antagonist mnt in T cells. Mol Cell Biol 266:2080–2092

    Article  Google Scholar 

  49. Limon J, Nedoszytko B, Brozek I et al (1995) Chromosome aberrations, spontaneous SCE, and growth kinetics in PHA-stimulated lymphocytes of five cases with Sézary syndrome. Cancer Genet Cytogenet 831:75–81

    Article  Google Scholar 

  50. Scarisbrick JJ, Woolford AJ, Russell-Jones R, Whittaker SJ (2000) Loss of heterozygosity on 10q and microsatellite instability in advanced stages of primary cutaneous T-cell lymphoma and possible association with homozygous deletion of PTEN. Blood 959:2937–2942

    Google Scholar 

  51. Scarisbrick JJ, Woolford AJ, Russell-Jones R, Whittaker SJ (2001) Allelotyping in mycosis fungoides and Sézary syndrome: common regions of allelic loss identified on 9p, 10q, and 17p. J Invest Dermatol 1173:663–670

    Article  Google Scholar 

  52. Wain EM, Mitchell TJ, Russell-Jones R, Whittaker SJ (2005) Fine mapping of chromosome 10q deletions in mycosis fungoides and Sézary syndrome: identification of two discrete regions of deletion at 10q23.33-24.1 and 10q24.33-25.1. Genes Chromosomes Cancer 422:184–192

    Article  Google Scholar 

  53. Gallardo F, Esteller M, Pujol RM, Costa C, Estrach T, Servitje O (2004) Methylation status of the p15, p16 and MGMT promoter genes in primary cutaneous T-cell lymphomas. Haematologica 8911:1401–1403

    Google Scholar 

  54. van Doorn R, Zoutman WH, Dijkman R et al (2005) Epigenetic profiling of cutaneous T-cell lymphoma: promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG, and p73. J Clin Oncol 2317:3886–3896

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blanca Espinet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Espinet, B., Salgado, R. (2013). Mycosis Fungoides and Sézary Syndrome. In: Banerjee, D., Shah, S. (eds) Array Comparative Genomic Hybridization. Methods in Molecular Biology, vol 973. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-281-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-281-0_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-280-3

  • Online ISBN: 978-1-62703-281-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics