Skip to main content

Rationale for Developing New Virus Vectors to Analyze Gene Function in Grasses Through Virus-Induced Gene Silencing

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 975))

Abstract

The exploding availability of genome and EST-based sequences from grasses requires a technology that allows rapid functional analysis of the multitude of genes that these resources provide. There are several techniques available to determine a gene’s function. For gene knockdown studies, silencing through RNAi is a powerful tool. Gene silencing can be accomplished through stable transformation or transient expression of a fragment of a target gene sequence. Stable transformation in rice, maize, and a few other species, although routine, remains a relatively low-throughput process. Transformation in other grass species is difficult and labor-intensive. Therefore, transient gene silencing methods including Agrobacterium-mediated and virus-induced gene silencing (VIGS) have great potential for researchers studying gene function in grasses. VIGS in grasses already has been used to determine the function of genes during pathogen challenge and plant development. It also can be used in moderate-throughput reverse genetics screens to determine gene function. However, the number of viruses modified to serve as silencing vectors in grasses is limited, and the silencing phenotype induced by these vectors is not optimal: the phenotype being transient and with moderate penetration throughout the tissue. Here, we review the most recent information available for VIGS in grasses and summarize the strengths and weaknesses in current virus–grass host systems. We describe ways to improve current virus vectors and the potential of other grass-infecting viruses for VIGS studies. This work is necessary because VIGS for the foreseeable future remains a higher throughput and more rapid system to evaluate gene function than stable transformation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Buell CR (2009) Poaceae genomes: going from unattainable to becoming a model clade for comparative plant genomics. Plant Physiol 149:111–116

    Article  PubMed  CAS  Google Scholar 

  2. Doust AN, Kellogg EA, Devos KM et al (2009) Foxtail millet: a sequence-driven grass model system. Plant Physiol 149:137–141

    Article  PubMed  CAS  Google Scholar 

  3. Paterson AH, Bowers JE, Bruggmann R et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  4. Vogel JP, Garvin DF, Mockler TC et al (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  CAS  Google Scholar 

  5. Burch-Smith TM, Anderson JC, Martin GB et al (2004) Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J 39:734–746

    Article  PubMed  CAS  Google Scholar 

  6. Tadege M, Ratet P, Mysore KS (2005) Insertional mutagenesis: a Swiss Army knife for functional genomics of Medicago truncatula. Trends Plant Sci 10:229–235

    Article  PubMed  CAS  Google Scholar 

  7. Kondou Y, Higuchi M, Matsui M (2010) High-throughput characterization of plant gene functions by using gain-of-function technology. Annu Rev Plant Biol 61:373–393

    Article  PubMed  CAS  Google Scholar 

  8. Andrea K, Rownak A (2003) Physical and chemical mutagenesis. Methods Mol Biol 236:189–203

    Google Scholar 

  9. Gilchrist EJ, Haughn GW (2005) TILLING without a plough: a new method with applications for reverse genetics. Curr Opin Plant Biol 8:211–215

    Article  PubMed  CAS  Google Scholar 

  10. Parinov S, Sundaresan V (2000) Functional genomics in Arabidopsis: large-scale insertional mutagenesis complements the genome sequencing project. Curr Opin Biotechnol 11:157–161

    Article  PubMed  CAS  Google Scholar 

  11. Senthil-Kumar M, Anand A, Uppalapati SR et al (2008) Virus-induced gene silencing and its applications. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 3:11

    Google Scholar 

  12. Becker A, Lange M (2010) VIGS genomics goes functional. Trends Plant Sci 15:1–4

    Article  PubMed  CAS  Google Scholar 

  13. Cakir C, Gillespie ME, Scofield SR (2010) Rapid determination of gene function by virus-induced gene silencing in wheat and barley. Crop Sci 50:S77–S84

    Article  CAS  Google Scholar 

  14. Robertson D (2004) VIGS vectors for gene silencing: many targets, many tools. Annu Rev Plant Biol 55:495–519

    Article  PubMed  CAS  Google Scholar 

  15. Baulcombe DC (1999) Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol 2:109–113

    Article  PubMed  CAS  Google Scholar 

  16. Scofield SR, Nelson RS (2009) Resources for virus-induced gene silencing in the grasses. Plant Physiol 149:152–157

    Article  PubMed  CAS  Google Scholar 

  17. Held MA, Penning B, Brandt AS et al (2008) Small-interfering RNAs from natural antisense transcripts derived from a cellulose synthase gene modulate cell wall biosynthesis in barley. Proc Natl Acad Sci USA 105:20534–20539

    Article  PubMed  CAS  Google Scholar 

  18. Holzberg S, Brosio P, Gross C et al (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J 30:315–327

    Article  PubMed  CAS  Google Scholar 

  19. Tai YS, Bragg J, Edwards MC (2005) Virus vector for gene silencing in wheat. Biotechniques 39:310–312

    Article  PubMed  CAS  Google Scholar 

  20. Meng Y, Moscou MJ, Wise RP (2009) Blufensin1 negatively impacts basal defense in response to barley powdery mildew. Plant Physiol 149:271–285

    Article  PubMed  CAS  Google Scholar 

  21. Ding XS, Schneider WL, Chaluvadi SR et al (2006) Characterization of a Brome mosaic virus strain and its use as a vector for gene silencing in monocotyledonous hosts. Mol Plant Microbe Interact 19:1229–1239

    Article  PubMed  CAS  Google Scholar 

  22. Pacak A, Strozycki PM, Barciszewska-Pacak M et al (2010) The Brome mosaic virus-based recombination vector triggers a limited gene silencing response depending on the orientation of the inserted sequence. Arch Virol 155:169–179

    Article  PubMed  CAS  Google Scholar 

  23. Purkayastha A, Mathur S, Verma V et al (2010) Virus-induced gene silencing in rice using a vector derived from a DNA virus. Planta 232:1531–1540

    Article  PubMed  CAS  Google Scholar 

  24. Bruun-Rasmussen M, Madsen CT, Jessing S et al (2007) Stability of Barley stripe mosaic virus-induced gene silencing in barley. Mol Plant Microbe Interact 20:1323–1331

    Article  PubMed  CAS  Google Scholar 

  25. Scofield SR, Amanda LH, Brandt S et al (2005) Development of a virus-induced gene silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol 138:2165–2173

    Article  PubMed  CAS  Google Scholar 

  26. Renner T, Bragg J, Driscoll HE et al (2009) Virus-induced gene silencing in the culinary ginger (Zingiber officinale): an effective mechanism for down-regulating gene expression in tropical monocots. Mol Plant 2:1084–1094

    Article  PubMed  CAS  Google Scholar 

  27. Wang X, Cao A, Yu C et al (2010) Establishment of an effective virus-induced gene silencing system with BSMV in Haynaldia villosa. Mol Biol Rep 37:967–972

    Article  PubMed  Google Scholar 

  28. Demircan T, Akkaya M (2010) Virus-induced gene silencing in Brachypodium distachyon, a model organism for cereals. Plant Cell Tissue Organ Cult 100:91–96

    Article  Google Scholar 

  29. Pacak A, Geisler K, Jorgensen B et al (2010) Investigations of barley stripe mosaic virus as a gene silencing vector in barley roots and in Brachypodium distachyon and oat. Plant Methods 6:26

    Article  PubMed  CAS  Google Scholar 

  30. Hema M, Kao CC (2004) Template sequence near the initiation nucleotide can modulate Brome mosaic virus RNA accumulation in plant protoplasts. J Virol 78:1169–1180

    Article  PubMed  CAS  Google Scholar 

  31. Ding XS, Ballard K, Nelson RS (2009) Improving virus-induced gene silencing (VIGS) in rice through Agrobacterium infiltration. In: Proceedings of the 14th International Congress on Molecular Plant-Microbe Interactions 7, 19–23 July, Quebec City, Quebec, CA

    Google Scholar 

  32. Alejska M, Figlerowicz M, Malinowska N et al (2005) A universal BMV-based RNA recombination system-how to search for general rules in RNA recombination. Nucleic Acids Res 33:e105

    Article  PubMed  Google Scholar 

  33. Ding XS, Rao CS, Nelson RS (2007) Analysis of gene function in rice through virus-induced gene silencing. Methods Mol Biol 354:145–160

    PubMed  CAS  Google Scholar 

  34. Van der Linde K, Kastner C, Kumlehn J et al (2011) Systemic virus-induced gene silencing allows functional characterization of maize genes during biotrophic interaction with Ustilago maydis. New Phytol 189:471–483

    Article  PubMed  Google Scholar 

  35. Loutre C, Wicker T, Travella S et al (2009) Two different CC-NBS-LRR genes are required for Lr10-mediated leaf rust resistance in tetraploid and hexaploid wheat. Plant J 60:1043–1054

    Article  PubMed  CAS  Google Scholar 

  36. Zhou HB, Li SF, Deng ZY et al (2007) Molecular analysis of three new receptor-like kinase genes from hexaploid wheat and evidence for their participation in the wheat hypersensitive response to stripe rust fungus infection. Plant J 52:420–434

    Article  PubMed  CAS  Google Scholar 

  37. Zhang L, Lavery L, Gill U et al (2009) A cation/proton-exchanging protein is a candidate for the barley NecS1 gene controlling necrosis and enhanced defense response to stem rust. Theor Appl Genet 118:385–397

    Article  PubMed  CAS  Google Scholar 

  38. Hein I, Pacak MB, Hrubikova K et al (2005) Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley. Plant Physiol 138:2155–2164

    Article  PubMed  CAS  Google Scholar 

  39. Shen QH, Saijo Y, Mauch S et al (2007) Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science 315:1098–1103

    Article  PubMed  CAS  Google Scholar 

  40. Cao AH, Xing LP, Wang XY et al (2011) Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci USA 108:7727–7732

    Article  PubMed  CAS  Google Scholar 

  41. Manning VA, Chu AL, Scofield SR et al (2010) Intracellular expression of a host-selective toxin, ToxA, in diverse plants phenocopies silencing of a ToxA-interacting protein, ToxABP1. New Phytol 187:1034–1047

    Article  PubMed  CAS  Google Scholar 

  42. Wang G-F, Wei X, Fan R et al (2011) Molecular analysis of common wheat genes encoding three types of cytosolic heat shock protein 90 (Hsp90): functional involvement of cytosolic Hsp90s in the control of wheat seedling growth and disease resistance. New Phytol 191:418–431

    Article  PubMed  CAS  Google Scholar 

  43. Delventhal R, Zellerhoff N, Schaffrath U (2011) Barley stripe mosaic virus-induced gene silencing (BSMV-IGS) as a tool for functional analysis of barley genes potentially involved in nonhost resistance. Plant Signal Behav 6:867–869

    Article  PubMed  CAS  Google Scholar 

  44. Van Eck L, Schultz T, Leach JE et al (2010) Virus-induced gene silencing of WRKY53 and an inducible phenylalanine ammonia-lyase in wheat reduces aphid resistance. Plant Biotechnol J 8:1023–1032

    Article  PubMed  Google Scholar 

  45. Oikawa A, Rahman A, Yamashita T et al (2007) Virus-induced gene silencing of P23k in barley leaf reveals morphological changes involved in secondary wall formation. J Exp Bot 58:2617–2625

    Article  PubMed  CAS  Google Scholar 

  46. Shi Y, Qin Y, Cao Y et al (2011) Influence of an m-type thioredoxin in maize on potyviral infection. Eur J Plant Pathol 131:1–10

    Article  Google Scholar 

  47. Cakir C, Tor M (2010) Factors influencing Barley stripe mosaic virus-mediated gene silencing in wheat. Physiol Mol Plant Pathol 74:246–253

    Article  CAS  Google Scholar 

  48. Tufan HA, Stefanato FL, McGrann GRD et al (2011) The Barley stripe mosaic virus system used for virus-induced gene silencing in cereals differentially affects susceptibility to fungal pathogens in wheat. J Plant Physiol 168:990–994

    Article  PubMed  CAS  Google Scholar 

  49. Lane LC (1977) Brome mosaic virus. CMI/AAB descriptions of plant viruses no. 180

    Google Scholar 

  50. Moreno IM, Garcia-Arenal F (2004) Genus Bromovirus, In: Lapierre PA and Signoret P.-A. (ed.) Viruses and virus diseases of Poaceae (Gramineae). INRA editions, Paris, pp 352–355

    Google Scholar 

  51. Chellappan P, Vanitharani R, Ogbe F et al (2005) Effect of temperature on geminivirus-induced RNA silencing in plants. Plant Physiol 138:1828–1841

    Article  PubMed  CAS  Google Scholar 

  52. Fu DQ, Zhu BZ, Zhu HL et al (2006) Enhancement of virus-induced gene silencing in tomato by low temperature and low humidity. Mol Cells 21:153–160

    Article  PubMed  CAS  Google Scholar 

  53. Igarashi A, Yamagata K, Sugai T et al (2009) Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes. Virology 386:407–416

    Article  PubMed  CAS  Google Scholar 

  54. Szittya G, Silhavy D, Molnar A et al (2003) Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. EMBO J 22:633–640

    Article  PubMed  CAS  Google Scholar 

  55. Tuttle JR, Idris AM, Brown JK et al (2008) Geminivirus-mediated gene silencing from Cotton leaf crumple virus is enhanced by low temperature in cotton. Plant Physiol 148:41–50

    Article  PubMed  CAS  Google Scholar 

  56. Ding XS, Flasinski S, Nelson RS (1999) Infection of barley by Brome mosaic virus is restricted predominantly to cells in and associated with veins through a temperature-dependent mechanism. Mol Plant Microbe Interact 12:615–623

    Article  CAS  Google Scholar 

  57. Lacomme C, Hrubikova K, Hein I (2003) Enhancement of virus-induced gene silencing through viral-based production of inverted-repeats. Plant J 34:543–553

    Article  PubMed  CAS  Google Scholar 

  58. Senthil-Kumar M, Mysore KS (2011) Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato. Plant Biotechnol J 9:797–806

    Article  PubMed  CAS  Google Scholar 

  59. Yamagishi N, Yoshikawa N (2009) Virus-induced gene silencing in soybean seeds and the emergence stage of soybean plants with Apple latent spherical virus vectors. Plant Mol Biol 71:15–24

    Article  PubMed  CAS  Google Scholar 

  60. Kim MJ, Kao C (2001) Factors regulating template switch in vitro by viral RNA-dependent RNA polymerases: implications for RNA-RNA recombination. Proc Natl Acad Sci USA 98:4972–4977

    Article  PubMed  CAS  Google Scholar 

  61. Lai MMC (1992) RNA recombination in animal and plant viruses. Microbiol Rev 56:61–79

    PubMed  CAS  Google Scholar 

  62. Shapka N, Nagy PD (2004) The AU-rich RNA recombination hot spot sequence of brome mosaic virus is functional in tombusviruses: implications for the mechanism of RNA recombination. J Virol 78:2288–2300

    Article  PubMed  CAS  Google Scholar 

  63. Shi BJ, Symons RH, Palukaitis P (2008) The cucumovirus 2b gene drives selection of inter-viral recombinants affecting the crossover site, the acceptor RNA and the rate of selection. Nucleic Acids Res 36:1057–1071

    Article  PubMed  CAS  Google Scholar 

  64. Sztuba-Solinska J, Dzianott A, Bujarski JJ (2011) Recombination of 5′ subgenomic RNA3a with genomic RNA3 of Brome mosaic bromovirus in vitro and in vivo. Virology 410:129–141

    Article  PubMed  CAS  Google Scholar 

  65. Constantin GD, Krath BN, MacFarlane SA et al (2004) Virus-induced gene silencing as a tool for functional genomics in a legume species. Plant J 40:622–631

    Article  PubMed  CAS  Google Scholar 

  66. Liu Y, Schiff M, Marathe R et al (2002) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to Tobacco mosaic virus. Plant J 30:415–429

    Article  PubMed  CAS  Google Scholar 

  67. Lu R, Martin-Hernandez AM, Peart JR et al (2003) Virus-induced gene silencing in plants. Methods 30:296–303

    Article  PubMed  CAS  Google Scholar 

  68. Wang CC, Cai XZ, Wang XM et al (2006) Optimisation of Tobacco rattle virus-induced gene silencing in Arabidopsis. Funct Plant Biol 33:347–355

    Article  CAS  Google Scholar 

  69. Orzaez D, Medina A, Torre S et al (2009) A visual reporter system for virus-induced gene silencing in tomato fruit based on anthocyanin accumulation. Plant Physiol 150:1122–1134

    Article  PubMed  CAS  Google Scholar 

  70. Ryu CM, Anand A, Kang L et al (2004) Agrodrench: a novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse solanaceous species. Plant J 40:322–331

    Article  PubMed  CAS  Google Scholar 

  71. Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J 3:259–273

    Article  PubMed  CAS  Google Scholar 

  72. Xie YH, Zhu BZ, Yang XL et al (2006) Delay of postharvest ripening and senescence of tomato fruit through virus-induced LeACS2 gene silencing. Postharvest Biol Technol 42:8–15

    Article  CAS  Google Scholar 

  73. Dasgupta I, Hull R, Eastop S et al (1991) Rice tungro bacilliform virus-DNA independently infects rice after Agrobacterium-mediated transfer. J Gen Virol 72:1215–1221

    Article  PubMed  CAS  Google Scholar 

  74. Grimsley N, Thomas H, Davies JW et al (1987) Agrobacterium-mediated delivery of infectious Maize streak virus into maize plants. Nature 325:177–179

    Article  CAS  Google Scholar 

  75. Hayes RJ, Macdonald H, Coutts RHA et al (1988) Agroinfection of Triticum aestivum with cloned DNA of Wheat dwarf virus. J Gen Virol 69:891–896

    Article  CAS  Google Scholar 

  76. Martin DP, Rybicki EP (2000) Improved efficiency of Zea mays agroinoculation with Maize streak virus. Plant Dis 84:1096–1098

    Article  CAS  Google Scholar 

  77. Shen W-H, Hohn B (1994) Amplification and expression of the β-glucuronidase gene in maize plants by vectors based on Maize streak virus. Plant J 5:227–236

    Article  CAS  Google Scholar 

  78. Dunoyer P, Lecellier CH, Parizotto EA et al (2004) Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell 16:1235–1250

    Article  PubMed  CAS  Google Scholar 

  79. Lakatos L, Szittya G, Silhavy D et al (2004) Molecular mechanism of RNA silencing suppression mediated by p19 protein of Tombusviruses. EMBO J 23:876–884

    Article  PubMed  CAS  Google Scholar 

  80. Qiu WP, Park JW, Scholthof HB (2002) Tombusvirus p19-mediated suppression of virus-induced gene silencing is controlled by genetic and dosage features that influence pathogenicity. Mol Plant Microbe Interact 15:269–280

    Article  PubMed  CAS  Google Scholar 

  81. Ye K, Malinina L, Patel DJ (2003) Recognition of small interfering RNA by a viral suppressor of RNA silencing. Nature 426:874–878

    Article  PubMed  CAS  Google Scholar 

  82. Harries PA, Palanichelvam K, Bhat S et al (2008) Tobacco mosaic virus 126-kDa protein increases the susceptibility of Nicotiana tabacum to other viruses and its dosage affects virus-induced gene silencing. Mol Plant Microbe Interact 21:1539–1548

    Article  PubMed  CAS  Google Scholar 

  83. Choi I-R, Stenger DC, Morris TJ et al (2000) A plant virus vector for systemic expression of foreign genes in cereals. Plant J 23:547–555

    Article  PubMed  CAS  Google Scholar 

  84. Haupt S, Duncan GH, Holzberg S et al (2001) Evidence for symplastic phloem unloading in sink leaves of barley. Plant Physiol 125:209–218

    Article  PubMed  CAS  Google Scholar 

  85. Tatineni S, McMechan AJ, Hein GL et al (2011) Efficient and stable expression of GFP through Wheat streak mosaic virus-based vectors in cereal hosts using a range of cleavage sites: formation of dense fluorescent aggregates for sensitive virus tracking. Virology 410:268–281

    Article  PubMed  CAS  Google Scholar 

  86. Niblett CL, Paulsen AQ (1975) Purification and further characterization of Panicum Mosaic Virus. Phytopathology 65:1157–1160

    Article  Google Scholar 

  87. Sill JWH, Talens LT (1962) New hosts and characteristics of the Panicum mosaic virus. Plant Dis Rep 46:780–783

    Google Scholar 

  88. Niblett CL, Paulsen AQ, Toler RW (1977) Panicum mosaic virus. CMI/AAB description of plant viruses no. 177

    Google Scholar 

  89. Stenger DC, Young BA, Qu F et al (2007) Wheat streak mosaic virus P1, not HC-Pro, facilitates disease synergism and suppression of post-transcriptional gene silencing. Phytopathology 97:S111

    Article  Google Scholar 

  90. Short MN (1983) Foxtail mosaic virus. CMI/AAB description of plant viruses. no. 264

    Google Scholar 

  91. Liu Z, Kearney C (2010) An efficient Foxtail mosaic virus vector system with reduced environmental risk. BMC Biotechnol 10:88

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Kiran Mysore, Clemencia M. Rojas, and Muthappa Senthil-Kumar for critical review of the manuscript. This work was supported by The BioEnergy Science Center, which is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science, and the Samuel Roberts Noble Foundation, Inc.

Note added in proof: A BSMV vector modified for both ligation-free cloning and expression behind a plant-active promoter was recently published: Yuan et al. 2011, PLoS ONE 6, e26468.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard S. Nelson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ramanna, H., Ding, X.S., Nelson, R.S. (2013). Rationale for Developing New Virus Vectors to Analyze Gene Function in Grasses Through Virus-Induced Gene Silencing. In: Becker, A. (eds) Virus-Induced Gene Silencing. Methods in Molecular Biology, vol 975. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-278-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-278-0_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-277-3

  • Online ISBN: 978-1-62703-278-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics