Skip to main content

Nanodiscs as a New Tool to Examine Lipid–Protein Interactions

  • Protocol
  • First Online:
Lipid-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 974))

Abstract

Nanodiscs are self-assembled discoidal fragments of lipid bilayers 8–16 nm in diameter, stabilized in solution by two amphipathic helical scaffold proteins. As stable and highly soluble membrane mimetics with controlled lipid composition and ability to add affinity tags to the scaffold protein, nanodiscs represent an attractive model system for solubilization, isolation, purification, and biophysical and biochemical studies of membrane proteins. In this chapter we overview various approaches to structural and functional studies of different classes of integral membrane proteins such as ion channels, transporters, GPCR and other receptors, membrane enzymes, and blood coagulation cascade proteins which have been incorporated into nanodiscs. We outline the advantages provided by homogeneity, ability to control oligomerization state of the target protein and lipid composition of the bilayer. Special attention is paid to the opportunities afforded by nanodisc system for the detailed studies of the role of different lipid properties and protein–lipid interactions in the functional behavior of membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jonas A, Kezdy KE, Wald JH (1989) Defined apolipoprotein A-I conformations in reconstituted high density lipoprotein discs. J Biol Chem 264:4818–4824

    PubMed  CAS  Google Scholar 

  2. Wald JH, Krul ES, Jonas A (1990) Structure of apolipoprotein A-I in three homogeneous, reconstituted high density lipoprotein particles. J Biol Chem 265:20037–20043

    PubMed  CAS  Google Scholar 

  3. Carlson JW, Jonas A, Sligar SG (1997) Imaging and manipulation of high-density lipoproteins. Biophys J 73:1184–1189

    Article  PubMed  CAS  Google Scholar 

  4. Beck von Bodman S et al (1986) Synthesis, bacterial expression, and mutagenesis of the gene coding for mammalian cytochrome b5. Proc Natl Acad Sci U S A 83:9443–9447

    Article  PubMed  CAS  Google Scholar 

  5. Bayburt TH, Carlson JW, Sligar SG (2000) Single molecule height measurements on a membrane protein in nanometer-scale phospholipid bilayer disks. Langmuir 16:5993–5997

    Article  CAS  Google Scholar 

  6. Bayburt TH, Sligar SG (2002) Single-molecule height measurements on microsomal cytochrome P450 in nanometer-scale phospholipid bilayer disks. Proc Natl Acad Sci U S A 99:6725–6730

    Article  PubMed  CAS  Google Scholar 

  7. Bayburt TH, Grinkova YV, Sligar SG (2002) Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett 2:853–856

    Article  CAS  Google Scholar 

  8. Bayburt TH, Sligar SG (2003) Self-assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers. Protein Sci 12:2476–2481

    Article  PubMed  CAS  Google Scholar 

  9. Civjan NR et al (2003) Direct solubilization of heterologously expressed membrane proteins by incorporation into nanoscale lipid bilayers. Biotechniques 35:556–558, 560, 562–563

    PubMed  CAS  Google Scholar 

  10. Denisov IG et al (2004) Directed Self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. J Am Chem Soc 126:3477–3487

    Article  PubMed  CAS  Google Scholar 

  11. Li Y et al (2006) Structural analysis of nanoscale self-assembled discoidal lipid bilayers by solid-state NMR spectroscopy. Biophys J 91:3819–3828

    Article  PubMed  CAS  Google Scholar 

  12. Phillips JC et al (1997) Predicting the structure of apolipoprotein A-I in reconstituted high-density lipoprotein disks. Biophys J 73:2337–2346

    Article  PubMed  CAS  Google Scholar 

  13. Wlodawer A et al (1979) High-density lipoprotein recombinants: evidence for a bicycle tire micelle structure obtained by neutron scattering and electron microscopy. FEBS Lett 104:231–235

    Article  PubMed  CAS  Google Scholar 

  14. Shih AY et al (2005) Molecular dynamics simulations of discoidal bilayers assembled from truncated human lipoproteins. Biophys J 88:548–556

    Article  PubMed  CAS  Google Scholar 

  15. Grinkova YV, Denisov IG, Sligar SG (2010) Engineering extended membrane scaffold proteins for self-assembly of soluble nanoscale lipid bilayers. Protein Eng Des Sel 23:843–848

    Article  PubMed  CAS  Google Scholar 

  16. Mendelsohn R et al (1989) Quantitative determination of conformational disorder in the acyl chains of phospholipid bilayers by infrared spectroscopy. Biochemistry 28:8934–8939

    Article  PubMed  CAS  Google Scholar 

  17. Lins L et al (1993) Structure of the apolipoprotein A-IV/lipid discoidal complexes: an attenuated total reflection polarized Fourier transform infrared spectroscopy study. Biochim Biophys Acta 1149:267–277

    Article  PubMed  CAS  Google Scholar 

  18. Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta 1469:159–195

    Article  PubMed  CAS  Google Scholar 

  19. Tristram-Nagle S, Nagle JF (2004) Lipid bilayers: thermodynamics, structure, fluctuations, and interactions. Chem Phys Lipids 127:3–14

    Article  PubMed  CAS  Google Scholar 

  20. Denisov IG et al (2005) Thermotropic phase transition in soluble nanoscale lipid bilayers. J Phys Chem B 109:15580–15588

    Article  PubMed  CAS  Google Scholar 

  21. Shaw AW, McLean MA, Sligar SG (2004) Phospholipid phase transitions in homogeneous nanometer scale bilayer discs. FEBS Lett 556:260–264

    Article  PubMed  CAS  Google Scholar 

  22. Gennis RB (1989) Biomembranes. Molecular structure and function. Springer, New York

    Google Scholar 

  23. Marsh D (2008) Protein modulation of lipids, and vice-versa, in membranes. Biochim Biophys Acta 1778:1545–1575

    Article  PubMed  CAS  Google Scholar 

  24. Marsh D (2010) Electron spin resonance in membrane research: protein-lipid interactions from challenging beginnings to state of the art. Eur Biophys J 39:513–525

    Article  PubMed  CAS  Google Scholar 

  25. Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11:688–699

    Article  PubMed  CAS  Google Scholar 

  26. He HT, Marguet D (2011) Detecting nanodomains in living cell membrane by fluorescence correlation spectroscopy. Annu Rev Phys Chem 62:417–436

    Article  PubMed  CAS  Google Scholar 

  27. Needham D, Evans E (1988) Structure and mechanical properties of giant lipid (DMPC) vesicle bilayers from 20 degrees C below to 10 degrees C above the liquid crystal-crystalline phase transition at 24 degrees C. Biochemistry 27:8261–8269

    Article  PubMed  CAS  Google Scholar 

  28. Cevc G (ed) (1993) Phospholipids handbook. Marcel Dekker, Inc, New York

    Google Scholar 

  29. Bayburt TH, Sligar SG (2010) Membrane protein assembly into nanodisks. FEBS Lett 584:1721–1727

    Article  PubMed  CAS  Google Scholar 

  30. Leitz AJ et al (2006) Functional reconstitution of β2-adrenergic receptors utilizing self-assembling nanodisc technology. Biotechniques 40:601–602, 604, 606, 608, 610, 612

    Article  PubMed  CAS  Google Scholar 

  31. Whorton MR et al (2007) A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc Natl Acad Sci U S A 104:7682–7687

    Article  PubMed  CAS  Google Scholar 

  32. Whorton MR et al (2008) Efficient coupling of transducin to monomeric rhodopsin in a phospholipid bilayer. J Biol Chem 283:4387–4394

    Article  PubMed  CAS  Google Scholar 

  33. Bayburt TH et al (2011) Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding. J Biol Chem 286:1420–1428

    Article  PubMed  CAS  Google Scholar 

  34. Knepp AM et al (2011) Direct measurement of thermal stability of expressed CCR5 and stabilization by small molecule ligands. Biochemistry 50:502–511

    Article  PubMed  CAS  Google Scholar 

  35. Goldsmith BR et al (2011) Biomimetic chemical sensors using nanoelectronic readout of olfactory receptor proteins. ACS Nano 5:5408–5416

    Article  PubMed  CAS  Google Scholar 

  36. Raschle T et al (2009) Structural and functional characterization of the integral membrane protein VDAC-1 in lipid bilayer Nanodiscs. J Am Chem Soc 131:17777–17779

    Article  PubMed  CAS  Google Scholar 

  37. Yu T-Y et al (2012) Solution NMR spectroscopic characterization of human VDAC-2 in detergent micelles and lipid bilayer nanodiscs. Biochim Biophys Acta. doi:10.1016/j.bbamem.2011.11.012

  38. Shenkarev ZO et al (2010) Lipid-protein nanodiscs as reference medium in detergent screening for high-resolution NMR studies of integral membrane proteins. J Am Chem Soc 132:5628–5629

    Article  PubMed  CAS  Google Scholar 

  39. Shenkarev ZO et al (2010) NMR structural and dynamical investigation of the isolated voltage-sensing domain of the potassium channel KvAP: implications for voltage gating. J Am Chem Soc 132:5630–5637

    Article  PubMed  CAS  Google Scholar 

  40. Alami M et al (2007) Nanodiscs unravel the interaction between the SecYEG channel and its cytosolic partner SecA. EMBO J 26:1995–2004

    Article  PubMed  CAS  Google Scholar 

  41. Dalal K, Duong F (2010) Reconstitution of the SecY translocon in nanodiscs. Methods Mol Biol 619:145–156

    Article  PubMed  CAS  Google Scholar 

  42. Dalal K et al (2009) Structure, binding, and activity of Syd, a SecY-interacting protein. J Biol Chem 284:7897–7902

    Article  PubMed  CAS  Google Scholar 

  43. Kawai T et al (2011) Catalytic activity of MsbA reconstituted in nanodisc particles is modulated by remote interactions with the bilayer. FEBS Lett 585:3533–3537

    Article  PubMed  CAS  Google Scholar 

  44. Ritchie TK, Kwon H, Atkins WM (2011) Conformational analysis of human ATP-binding cassette transporter ABCB1 in lipid nanodiscs and inhibition by the antibodies MRK16 and UIC2. J Biol Chem 286:39489–39496

    Article  PubMed  CAS  Google Scholar 

  45. Alvarez FJ, Orelle C, Davidson AL (2010) Functional reconstitution of an ABC transporter in nanodiscs for use in electron paramagnetic resonance spectroscopy. J Am Chem Soc 132:9513–9515

    Article  PubMed  CAS  Google Scholar 

  46. Dalal K, Duong F (2011) The SecY complex: conducting the orchestra of protein translocation. Trends Cell Biol 21:506–514

    Article  PubMed  CAS  Google Scholar 

  47. Katayama H et al (2010) Three-dimensional structure of the anthrax toxin pore inserted into lipid nanodiscs and lipid vesicles. Proc Natl Acad Sci U S A 107:3453–3457, S3453/3451-S3453/3453

    Article  PubMed  CAS  Google Scholar 

  48. Boldog T et al (2006) Nanodiscs separate chemoreceptor oligomeric states and reveal their signaling properties. Proc Natl Acad Sci U S A 103:11509–11514

    Article  PubMed  CAS  Google Scholar 

  49. Li M, Hazelbauer GL (2011) Core unit of chemotaxis signaling complexes. Proc Natl Acad Sci U S A 108:9390–9395

    Article  PubMed  CAS  Google Scholar 

  50. Glueck JM, Koenig BW, Willbold D (2011) Nanodiscs allow the use of integral membrane proteins as analytes in surface plasmon resonance studies. Anal Biochem 408:46–52

    Article  CAS  Google Scholar 

  51. Mi L-Z et al (2008) Functional and structural stability of the epidermal growth factor receptor in detergent micelles and phospholipid nanodiscs. Biochemistry 47:10314–10323

    Article  PubMed  CAS  Google Scholar 

  52. Näsvik Öjemyr L et al (2012) Reconstitution of respiratory oxidases in membrane nanodiscs for investigation of proton-coupled electron transfer. FEBS Lett 586(5):640–645

    Article  PubMed  Google Scholar 

  53. Bayburt TH et al (2007) Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins. J Biol Chem 282:14875–14881

    Article  PubMed  CAS  Google Scholar 

  54. Ranaghan MJ et al (2011) Green proteorhodopsin reconstituted into nanoscale phospholipid bilayers (nanodiscs) as photoactive monomers. J Am Chem Soc 133:18318–18327

    Article  PubMed  CAS  Google Scholar 

  55. Boldog T, Li M, Hazelbauer GL (2007) Using nanodiscs to create water-soluble transmembrane chemoreceptors inserted in lipid bilayers. Methods Enzymol 423:317–335

    Article  PubMed  CAS  Google Scholar 

  56. Zhang XX et al (2012) Nanodiscs and SILAC-based mass spectrometry to identify a membrane protein interactome. J Proteome Res 11:1454–1459

    Article  PubMed  Google Scholar 

  57. Baas BJ, Denisov IG, Sligar SG (2004) Homotropic cooperativity of monomeric cytochrome P450 3A4 in a nanoscale native bilayer environment. Arch Biochem Biophys 430:218–228

    Article  PubMed  CAS  Google Scholar 

  58. Denisov IG, Sligar SG (2011) Cytochromes P450 in nanodiscs. Biochim Biophys Acta 1814:223–229

    Article  PubMed  CAS  Google Scholar 

  59. Duan H et al (2004) Co-incorporation of heterologously expressed Arabidopsis cytochrome P450 and P450 reductase into soluble nanoscale lipid bilayers. Arch Biochem Biophys 424:141–153

    Article  PubMed  CAS  Google Scholar 

  60. Duan H, Schuler MA (2006) Heterologous expression and strategies for encapsulation of membrane-localized plant P450s. Phytochem Rev 5:507–523

    Article  CAS  Google Scholar 

  61. Frank DJ, Denisov IG, Sligar SG (2011) Analysis of heterotropic cooperativity in cytochrome P450 3A4 using α-naphthoflavone and testosterone. J Biol Chem 286:5540–5545

    Article  PubMed  CAS  Google Scholar 

  62. Grinkova YV, Denisov IG, Sligar SG (2010) Functional reconstitution of monomeric CYP3A4 with multiple cytochrome P450 reductase molecules in nanodiscs. Biochem Biophys Res Commun 398:194–198

    Article  PubMed  CAS  Google Scholar 

  63. Grinkova YV et al (2008) The ferrous-oxy complex of human aromatase. Biochem Biophys Res Commun 372:379–382

    Article  PubMed  CAS  Google Scholar 

  64. Morrissey JH et al (2008) Blood clotting reactions on nanoscale phospholipid bilayers. Thromb Res 122:S23–S26

    Article  PubMed  CAS  Google Scholar 

  65. Jonas A, Krajnovich DJ (1978) Effect of cholesterol on the formation of micellar complexes between bovine A-I apolipoprotein and L-alpha-dimyristoyl-phosphatidylcholine. J Biol Chem 253:5758–5763

    PubMed  CAS  Google Scholar 

  66. Shaw AW et al (2007) The local phospholipid environment modulates the activation of blood clotting. J Biol Chem 282:6556–6563

    Article  PubMed  CAS  Google Scholar 

  67. Jonas A, Maine GT (1979) Kinetics and mechanism of phosphatidylcholine and cholesterol exchange between single bilayer vesicles and bovine serum high-density lipoprotein. Biochemistry 18:1722–1728

    Article  PubMed  CAS  Google Scholar 

  68. Bayburt TH, Grinkova YV, Sligar SG (2006) Assembly of single bacteriorhodopsin trimers in bilayer nanodiscs. Arch Biochem Biophys 450:215–222

    Article  PubMed  CAS  Google Scholar 

  69. Borch J, Roepstorff P, Moeller-Jensen J (2011) Nanodisc-based co-immunoprecipitation for mass spectrometric identification of membrane-interacting proteins. Mol Cell Proteomics 10:O110 006775, 006779

    Google Scholar 

  70. Borch J et al (2008) Nanodiscs for immobilization of lipid bilayers and membrane receptors: kinetic analysis of cholera toxin binding to a glycolipid receptor. Anal Chem 80:6245–6252

    Article  PubMed  CAS  Google Scholar 

  71. Jonas A (1976) Microviscosity of lipid domains in human serum lipoproteins. Biochim Biophys Acta 486:10–22

    PubMed  CAS  Google Scholar 

  72. Shenkarev ZO et al (2009) Lipid-protein nanodiscs: possible application in high-resolution NMR investigations of membrane proteins and membrane-active peptides. Biochemistry (Mosc) 74:756–765

    Article  CAS  Google Scholar 

  73. Zocher M et al (2012) Single-molecule force spectroscopy from nanodiscs: an assay to quantify folding, stability, and interactions of native membrane proteins. ACS Nano 6:961–971

    Article  PubMed  CAS  Google Scholar 

  74. Morrissey JH et al (2009) Protein-membrane interactions: blood clotting on nanoscale bilayers. J Thromb Haemost 7:169–172

    Article  PubMed  CAS  Google Scholar 

  75. Kobashigawa Y et al (2011) Phosphoinositide-incorporated lipid-protein nanodiscs: a tool for studying protein-lipid interactions. Anal Biochem 410:77–83

    Article  PubMed  CAS  Google Scholar 

  76. Boettcher JM et al (2011) Atomic view of calcium-induced clustering of phosphatidylserine in mixed lipid bilayers. Biochemistry 50:2264–2273

    Article  PubMed  CAS  Google Scholar 

  77. Morrissey JH et al (2010) Protein-phospholipid interactions in blood clotting. Thromb Res 125:S23–S25

    Article  PubMed  CAS  Google Scholar 

  78. Lambert MP et al (1998) Diffusible, nonfibrillar ligands derived from Abeta42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95:6448–6453

    Article  PubMed  CAS  Google Scholar 

  79. Wilcox K et al (2011) Abeta oligomer-induced synapse degeneration in Alzheimer's disease. Cell Mol Neurobiol 31:939–948

    Article  PubMed  CAS  Google Scholar 

  80. Jonas A (1986) Reconstitution of high-density lipoproteins. Methods Enzymol 128:553–582

    Article  PubMed  CAS  Google Scholar 

  81. Jonas A, Jung RW (1975) Fluidity of the lipid phase of bovine serum high density lipoprotein from fluorescence polarization measurements. Biochem Biophys Res Commun 66:651–657

    Article  PubMed  CAS  Google Scholar 

  82. Matz CE, Jonas A (1982) Micellar complexes of human apolipoprotein A-I with phosphatidylcholines and cholesterol prepared from cholate-lipid dispersions. J Biol Chem 257:4535–4540

    PubMed  CAS  Google Scholar 

  83. Marty MT, Das A, Sligar SG (2012) Ultra-thin layer MALDI mass spectrometry of membrane proteins in nanodiscs. Anal Bioanal Chem 402:721–729

    Article  PubMed  CAS  Google Scholar 

  84. Das A, Grinkova YV, Sligar SG (2007) Redox potential control by drug binding to cytochrome P 450 3A4. J Am Chem Soc 129:13778–13779

    Article  PubMed  CAS  Google Scholar 

  85. Das A, Sligar SG (2009) Modulation of the cytochrome P450 reductase redox potential by the phospholipid bilayer. Biochemistry 48:12104–12112

    Article  PubMed  CAS  Google Scholar 

  86. Jonas A, Hesterberg LK, Drengler SM (1978) Incorporation of excess cholesterol by high density serum lipoproteins. Biochim Biophys Acta 528:47–57

    Article  PubMed  CAS  Google Scholar 

  87. Raschle T et al (2010) Nonmicellar systems for solution NMR spectroscopy of membrane proteins. Curr Opin Struct Biol 20:471–479

    Article  PubMed  CAS  Google Scholar 

  88. Serebryany E, Zhu GA, Yan ECY (2012) Artificial membrane-like environments for in vitro studies of purified G-protein coupled receptors. Biochim Biophys Acta 1818:225–233

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our work is supported by grants from the National Institutes of Health GM33775 and GM31756.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen G. Sligar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Schuler, M.A., Denisov, I.G., Sligar, S.G. (2013). Nanodiscs as a New Tool to Examine Lipid–Protein Interactions. In: Kleinschmidt, J. (eds) Lipid-Protein Interactions. Methods in Molecular Biology, vol 974. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-275-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-275-9_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-274-2

  • Online ISBN: 978-1-62703-275-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics