Skip to main content

Expression Cloning of Human B Cell Immunoglobulins

  • Protocol
  • First Online:
Lymphoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 971))

Abstract

The majority of lymphomas originate from B cells at the germinal center stage or beyond. Preferential selection of B cell clones by a limited set of antigens has been suggested to drive lymphoma development. However, little is known about the specificity of the antibodies expressed by lymphoma cells, and the role of antibody-specificity in lymphomagenesis remains elusive. Here, we describe a strategy to characterize the antibody reactivity of human B cells. The approach allows the unbiased characterization of the human antibody repertoire on a single cell level through the generation of recombinant monoclonal antibodies from single primary human B cells of defined origin. This protocol offers a detailed description of the method starting from the flow cytometric isolation of single human B cells, to the RT-PCR-based amplification of the expressed Igh, Igκ, and Igλ chain genes, and Ig gene expression vector cloning for the in vitro production of monoclonal antibodies. The strategy may be used to obtain information on the clonal evolution of B cell lymphomas by single cell Ig gene sequencing and on the antibody reactivity of human lymphoma B cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tonegawa S (1983) Somatic generation of antibody diversity. Nature 302:575–581

    Article  PubMed  CAS  Google Scholar 

  2. Burnet FM (1972) Auto-immunity and auto-immune disease. Medical and Technical Publishing Co Ltd, Lancaster

    Book  Google Scholar 

  3. Goodnow CC et al (1995) Self-tolerance checkpoints in B lymphocyte development. Adv Immunol 59:279–368

    Article  PubMed  CAS  Google Scholar 

  4. Wardemann H et al (2003) Predominant autoantibody production by early human B cell precursors. Science 301:1374–1377

    Article  PubMed  CAS  Google Scholar 

  5. Tiller T et al (2007) Autoreactivity in human IgG  +  memory B cells. Immunity 26:205–213

    Article  PubMed  CAS  Google Scholar 

  6. Scheid JF et al (2011) Differential regulation of self-reactivity discriminates between IgG  +  human circulating memory B cells and bone marrow plasma cells. Proc Natl Acad Sci USA 108:18044–18048

    Article  PubMed  CAS  Google Scholar 

  7. Berek C, Milstein C (1988) The dynamic nature of the antibody repertoire. Immunol Rev 105:5–26

    Article  PubMed  CAS  Google Scholar 

  8. Klein U, Dalla-Favera R (2008) Germinal centres: role in B-cell physiology and malignancy. Nat Rev Immunol 8:22–33

    Article  PubMed  CAS  Google Scholar 

  9. Muramatsu M et al (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102:553–563

    Article  PubMed  CAS  Google Scholar 

  10. Rui L et al (2011) Malignant pirates of the immune system. Nat Immunol 12:933–940

    Article  PubMed  CAS  Google Scholar 

  11. Küppers R et al (1999) Cellular origin of human B-cell lymphomas. N Engl J Med 341:1520–1529

    Article  PubMed  Google Scholar 

  12. Küppers R (2005) Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer 5:251–262

    Article  PubMed  Google Scholar 

  13. Zenz T et al (2010) From pathogenesis to treatment of chronic lymphocytic leukemia. Nat Rev Cancer 10:37–50

    PubMed  CAS  Google Scholar 

  14. Agathangelidis A et al (2011) Unlocking the secrets of immunoglobulin receptors in mantle cell lymphoma: Implications for the origin and selection of the malignant cells. Semin Cancer Biol 21:299–307

    Article  PubMed  CAS  Google Scholar 

  15. Messmer BT et al (2004) Multiple distinct sets of stereotyped antigen receptors indicate a role for antigen in promoting chronic lymphocytic leukemia. J Exp Med 200:519–525

    Article  PubMed  CAS  Google Scholar 

  16. Hervé M et al (2005) Unmutated and mutated chronic lymphocytic leukemias derive from self-reactive B cell precursors despite expressing different antibody reactivity. J Clin Invest 115:1636–1643

    Article  PubMed  Google Scholar 

  17. Catera R et al (2008) Chronic lymphocytic leukemia cells recognize conserved epitopes associated with apoptosis and oxidation. Mol Med 14:665–674

    Article  PubMed  CAS  Google Scholar 

  18. Hadzidimitriou A et al (2009) Evidence for the significant role of immunoglobulin light chains in antigen recognition and selection in chronic lymphocytic leukemia. Blood 113:403–411

    Article  PubMed  CAS  Google Scholar 

  19. Bahler DW, Levy R (1992) Clonal evolution of a follicular lymphoma: evidence for antigen selection. Proc Natl Acad Sci USA 89:6770–6774

    Article  PubMed  CAS  Google Scholar 

  20. Hussell T et al (1996) Helicobacter pylori-specific tumour-infiltrating T cells provide contact dependent help for the growth of malignant B cells in low-grade gastric lymphoma of mucosa-associated lymphoid tissue. J Pathol 178:122–127

    Article  PubMed  CAS  Google Scholar 

  21. Burger JA et al (2009) The microenvironment in mature B-cell malignancies: a target for new treatment strategies. Blood 114:3367–3375

    Article  PubMed  CAS  Google Scholar 

  22. Steinitz M et al (1977) EB virus-induced B lymphocyte cell lines producing specific antibody. Nature 269:420–422

    Article  PubMed  CAS  Google Scholar 

  23. Lanzavecchia A, Corti D, Sallusto F (2007) Human monoclonal antibodies by immortalization of memory B cells. Curr Opin Biotechnol 18:523–528

    Article  PubMed  CAS  Google Scholar 

  24. Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  PubMed  Google Scholar 

  25. McCafferty J et al (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348:552–554

    Article  PubMed  CAS  Google Scholar 

  26. Tiller T et al (2008) Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J Immunol Methods 329:112–124

    Article  PubMed  CAS  Google Scholar 

  27. Benckert J et al (2011) The majority of intestinal IgA  +  and IgG  +  plasmablasts in the human gut are antigen-specific. J Clin Invest 121:1946–1955

    Article  PubMed  CAS  Google Scholar 

  28. Binder M et al (2011) B-cell receptor epitope recognition correlates with the clinical course of chronic lymphocytic leukemia. Cancer 117:1891–1900

    Article  PubMed  CAS  Google Scholar 

  29. Mouquet H et al (2010) Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation. Nature 467:591–595

    Article  PubMed  CAS  Google Scholar 

  30. Tiller T, Busse CE, Wardemann H (2009) Cloning and expression of murine Ig genes from single B cells. J Immunol Methods 350:183–193

    Article  PubMed  CAS  Google Scholar 

  31. Gu H, Rajewsky K (2004) B cell protocols. Humana Press Inc, New York

    Book  Google Scholar 

  32. Scheid JF et al (2009) A method for identification of HIV gp140 binding memory B cells in human blood. J Immunol Methods 343:65–67

    Article  PubMed  CAS  Google Scholar 

  33. Tsuiji M et al (2006) A checkpoint for autoreactivity in human IgM  +  memory B cell development. J Exp Med 203:393–400

    Article  PubMed  Google Scholar 

  34. Smilevska T et al (2008) Immunoglobulin kappa gene repertoire and somatic hypermutation patterns in follicular lymphoma. Blood Cells Mol Dis 41:215–218

    Article  PubMed  CAS  Google Scholar 

  35. Fais F et al (1998) Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest 102:1515–1525

    Article  PubMed  CAS  Google Scholar 

  36. Thompsett AR et al (1999) V(H) gene sequences from primary central nervous system lymphomas indicate derivation from highly mutated germinal center B cells with ongoing mutational activity. Blood 94:1738–1746

    PubMed  CAS  Google Scholar 

  37. Montesinos-Rongen M et al (1999) Primary central nervous system lymphomas are derived from germinal-center B cells and show a preferential usage of the V4-34 gene segment. Am J Pathol 155:2077–2086

    Article  PubMed  CAS  Google Scholar 

  38. Stamatopoulos K et al (1997) Follicular lymphoma immunoglobulin kappa light chains are affected by the antigen selection process, but to a lesser degree than their partner heavy chains. Br J Haematol 96:132–146

    Article  PubMed  CAS  Google Scholar 

  39. Noppe SM et al (1999) The genetic variability of the VH genes in follicular lymphoma: the impact of the hypermutation mechanism. Br J Haematol 107:625–640

    Article  PubMed  CAS  Google Scholar 

  40. Aarts WM et al (2000) Variable heavy chain gene analysis of follicular lymphomas: correlation between heavy chain isotype expression and somatic mutation load. Blood 95:2922–2929

    PubMed  CAS  Google Scholar 

  41. Kabat EA, Wu TT (1991) Identical V region amino acid sequences and segments of sequences in antibodies of different specificities. Relative contributions of VH and VL genes, minigenes, and complementarity-determining regions to binding of antibody-combining sites. J Immunol 147:1709–1719

    PubMed  CAS  Google Scholar 

  42. Hummel M et al (1994) Mantle cell (previously centrocytic) lymphomas express VH genes with no or very little somatic mutations like the physiologic cells of the follicle mantle. Blood 84:403–407

    PubMed  CAS  Google Scholar 

  43. Klein U et al (1998) Somatic hypermutation in normal and transformed human B cells. Immunol Rev 162:261–280

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hedda Wardemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wardemann, H., Kofer, J. (2013). Expression Cloning of Human B Cell Immunoglobulins. In: Küppers, R. (eds) Lymphoma. Methods in Molecular Biology, vol 971. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-269-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-269-8_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-268-1

  • Online ISBN: 978-1-62703-269-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics