Skip to main content

High-Throughput RNA Sequencing in B-Cell Lymphomas

  • Protocol
  • First Online:
Lymphoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 971))

Abstract

High-throughput mRNA sequencing (RNA-seq) uses massively parallel sequencing to allow an unbiased analysis of both genome-wide transcription levels and mutation status of a tumor. In the RNA-seq method, complementary DNA (cDNA) is used to generate short sequence reads by immobilizing millions of amplified DNA fragments onto a solid surface and performing the sequence reaction. The resulting sequences are aligned to a reference genome or transcript database to create a comprehensive description of the analyzed transcriptome. This chapter describes a protocol to perform RNA-seq using the Illumina sequencing platform, presents sequencing data quality metrics and outlines a bioinformatic pipeline for sequence alignment, digital gene expression, and mutation discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morin RD, Mendez-Lago M, Mungall AJ et al (2011) Frequent mutation of histone-­modifying genes in non-Hodgkin lymphoma. Nature 476:298–303

    Article  PubMed  CAS  Google Scholar 

  2. Pasqualucci L, Trifonov V, Fabbri G et al (2011) Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet 43:830–837

    Article  PubMed  CAS  Google Scholar 

  3. Ngo VN, Young RM, Schmitz R et al (2011) Oncogenically active MYD88 mutations in human lymphoma. Nature 470:115–119

    Article  PubMed  CAS  Google Scholar 

  4. Puente XS, Pinyol M, Quesada V et al (2011) Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 475:101–105

    Article  PubMed  CAS  Google Scholar 

  5. Kridel R, Meissner B, Rogic S et al (2012) Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma. Blood 119:1963–1971

    Article  PubMed  CAS  Google Scholar 

  6. Schmitz R, Young RM, Ceribelli M et al (2012) Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 490:116–120

    Google Scholar 

  7. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  PubMed  CAS  Google Scholar 

  8. Mortazavi A, Williams BA, McCue K et al (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  PubMed  CAS  Google Scholar 

  9. Frischmeyer PA, Dietz HC (1999) Nonsense-mediated mRNA decay in health and disease. Hum Mol Genet 8:1893–1900

    Article  PubMed  CAS  Google Scholar 

  10. Garber M, Grabherr MG, Guttman M et al (2011) Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods 8:469–477

    Article  PubMed  CAS  Google Scholar 

  11. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  PubMed  CAS  Google Scholar 

  12. Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  Google Scholar 

  13. Larsson TP, Murray CG, Hill T et al (2005) Comparison of the current RefSeq, Ensembl and EST databases for counting genes and gene discovery. FEBS Lett 579:690–698

    Article  PubMed  CAS  Google Scholar 

  14. Robinson JT, Thorvaldsdottir H, Winckler W et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26

    Article  PubMed  CAS  Google Scholar 

  15. Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4:1073–1081

    Article  PubMed  CAS  Google Scholar 

  16. Rui L, Schmitz R, Ceribelli M et al (2011) Malignant pirates of the immune system. Nat Immunol 12:933–940

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the by the Dr. Mildred Scheel Stiftung für Krebsforschung (Deutsche Krebshilfe). We are grateful to Yuliya Kriga, Jyoti Shetty, Yongmei Zhao, John Powell, and George Wright who were instrumental in establishing the protocols described here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Schmitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Xiao, W., Tran, B., Staudt, L.M., Schmitz, R. (2013). High-Throughput RNA Sequencing in B-Cell Lymphomas. In: Küppers, R. (eds) Lymphoma. Methods in Molecular Biology, vol 971. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-269-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-269-8_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-268-1

  • Online ISBN: 978-1-62703-269-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics