Skip to main content

Identification of Pathogenetically Relevant Genes in Lymphomagenesis by shRNA Library Screens

  • Protocol
  • First Online:
Lymphoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 971))

  • 2907 Accesses

Abstract

RNA interference (RNAi) is a conserved posttranscriptional gene silencing mechanism that has recently emerged as a breakthrough genetic tool in functional genomics and drug target discovery. An increasing number of studies applying RNAi in high-throughput screens have begun to unravel complex signaling networks underlying diverse cellular processes. This chapter describes an approach to construct a conditional small-hairpin (sh)RNA library and its application in human lymphoma cell lines. A library cloning procedure outlines the incorporation of shRNA sequences and random 60-mer “bar code” oligonucleotides, enabling rapid identification of the hairpin by microarrays. Lymphoma cell lines are optimized for efficient retroviral transduction and tetracycline inducibility. The shRNA library is suitable for identifying molecular targets in cancer, but also versatile for various screening strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  2. Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  PubMed  CAS  Google Scholar 

  3. Kennerdell JR, Carthew RW (1998) Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95:1017–1026

    Article  PubMed  CAS  Google Scholar 

  4. Ngo H, Tschudi C, Gull K et al (1998) Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc Natl Acad Sci U S A 95:14687–14692

    Article  PubMed  CAS  Google Scholar 

  5. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible ­co-suppression of homologous genes in trans. Plant Cell 2:279–289

    PubMed  CAS  Google Scholar 

  6. Manche L, Green SR, Schmedt C et al (1992) Interactions between double-stranded RNA regulators and the protein kinase DAI. Mol Cell Biol 12:5238–5248

    PubMed  CAS  Google Scholar 

  7. Elbashir SM, Harborth J, Lendeckel W et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  PubMed  CAS  Google Scholar 

  8. Ngo VN, Young RM, Schmitz R et al (2011) Oncogenically active MYD88 mutations in human lymphoma. Nature 470:115–119

    Article  PubMed  CAS  Google Scholar 

  9. Bidere N, Ngo VN, Lee J et al (2009) Casein kinase 1alpha governs antigen-receptor-induced NF-kappaB activation and human lymphoma cell survival. Nature 458:92–96

    Article  PubMed  CAS  Google Scholar 

  10. Ngo VN, Davis RE, Lamy L et al (2006) A loss-of-function RNA interference screen for molecular targets in cancer. Nature 441:106–110

    Article  PubMed  CAS  Google Scholar 

  11. Mullenders J, Bernards R (2009) Loss-of-function genetic screens as a tool to improve the diagnosis and treatment of cancer. Oncogene 28:4409–4420

    Article  PubMed  CAS  Google Scholar 

  12. Downward J (2004) Use of RNA interference libraries to investigate oncogenic signalling in mammalian cells. Oncogene 23:8376–8383

    Article  PubMed  CAS  Google Scholar 

  13. Paddison PJ, Silva JM, Conklin DS et al (2004) A resource for large-scale RNA-interference-based screens in mammals. Nature 428:427–431

    Article  PubMed  CAS  Google Scholar 

  14. Brummelkamp TR, Bernards R, Agami R (2002) Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2:243–247

    Article  PubMed  CAS  Google Scholar 

  15. Markowitz D, Goff S, Bank A (1988) A safe packaging line for gene transfer: separating viral genes on two different plasmids. J Virol 62:1120–1124

    PubMed  CAS  Google Scholar 

  16. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553

    Article  PubMed  CAS  Google Scholar 

  17. van de Wetering M, Oving I, Muncan V et al (2003) Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep 4:609–615

    Article  PubMed  Google Scholar 

  18. Reynolds A, Leake D, Boese Q et al (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22:326–330

    Article  PubMed  CAS  Google Scholar 

  19. Cosset FL, Takeuchi Y, Battini JL et al (1995) High-titer packaging cells producing recombinant retroviruses resistant to human serum. J Virol 69:7430–7436

    PubMed  CAS  Google Scholar 

  20. O’Reilly L, Roth MJ (2003) G541R within the 4070A TM protein regulates fusion in murine leukemia viruses. J Virol 77:12011–12021

    Article  PubMed  Google Scholar 

  21. Berns K, Hijmans EM, Mullenders J et al (2004) A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428:431–437

    Article  PubMed  CAS  Google Scholar 

  22. Silva JM, Li MZ, Chang K et al (2005) Second-generation shRNA libraries covering the mouse and human genomes. Nat Genet 37:1281–1288

    PubMed  CAS  Google Scholar 

  23. Schlabach MR, Luo J, Solimini NL et al (2008) Cancer proliferation gene discovery through functional genomics. Science 319:620–624

    Article  PubMed  CAS  Google Scholar 

  24. Bassik MC, Lebbink RJ, Churchman LS et al (2009) Rapid creation and quantitative monitoring of high coverage shRNA libraries. Nat Methods 6:443–445

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank Xin Yu, Hong Zhao, Laurence Lamy, Haihua Chu, Jenny Zhang, Cailin Collins, Weihong Xu, and Yandan Yang for the construction of the library. I thank Liming Yang, Wenming Xiao, John Powell, and George Wright for bioinformatics and statistical supports and R. Eric Davis for the FLYRD18/mCAT-IRES-Bleo cell line and packaging vectors. I am grateful to the generous support and helpful advice from Louis M. Staudt. This work was supported in part by the Damon Runyon Cancer Research Foundation to V.N.N. and the Intramural Research Program of the National Institute of Health, National Cancer Institute, to L.M.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vu N. Ngo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ngo, V.N. (2013). Identification of Pathogenetically Relevant Genes in Lymphomagenesis by shRNA Library Screens. In: Küppers, R. (eds) Lymphoma. Methods in Molecular Biology, vol 971. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-269-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-269-8_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-268-1

  • Online ISBN: 978-1-62703-269-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics