Skip to main content

The Cytoskeleton as a Pharmacological Target in Neurodegenerative Diseases

  • Protocol
  • First Online:
The Cytoskeleton

Part of the book series: Neuromethods ((NM,volume 79))

  • 1127 Accesses

Abstract

The cytoskeleton plays a key role in maintaining the highly asymmetrical shape and structural polarity of neurons that are essential for neuritogenesis and neuronal physiology. In neurodegenerative diseases, the cytoskeleton is abnormally assembled and impairment of neurotransmission occurs. Cumulative evidence suggests that neurodegenerative diseases and psychiatric illnesses are associated with cytoskeletal alterations in neurons that, in turn, lose synaptic connectivity and the ability to transmit incoming axonal information to the somatodendritic domain. Major components of the neuronal cytoskeleton are the microtubules (MT). MTs, composed of the tubulin heterodimer backbone and decorated/regulated by MT-associated proteins (MAPs), provide a dynamic skeleton for cellular structures as well as trails for motor protein movement of important cargo.

The following suggested set of selected assays are intended to evaluate MT changes and effects by candidate drugs. These methods assess different characteristics of MTs in versatile assays as follows. (1) MT polymerization assays. (2) Quantifying polymerized vs. soluble tubulin by fractionation of tubulin pools and evaluating percent of polymerized tubulin as well as MAPs, by size fractionations immunoassays. (3) Tubulin isoform expression, for example, beta 3 tubulin expression at the level of RNA and protein as a marker for neuronal differentiation and neurite outgrowth using quantitative reverse transcription polymerase chain reaction (RT-PCR), immunoblotting, and immunofluorescence. (4) The microtubule-associated protein 2, MAP2 expression as a marker for neurite outgrowth and neuronal survival. (5) The microtubule-associated protein tau expression, phosphorylation, and aggregation as a marker for tau pathology (tauopathy), a major hallmark of Alzheimer’s disease (AD). (6) MT dynamics by distinguishing stable and dynamic microtubules through their content of posttranslationally modified α-tubulin. MTs that are rich in tyrosinated/detyrosinated tubulin are visualized using specific antibodies and immunofluorescence. (7) Measurements of cellular/axoplasmic transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flament-Durand J, Couck AM (1979) Spongiform alterations in brain biopsies of presenile dementia. Acta Neuropathol 46:159–162

    Article  PubMed  CAS  Google Scholar 

  2. Ellisman M, Ranganathan R, Deerinck T, Young S, Terry R, Mirra S (1987) Neuronal fibrillar cytoskeleton and endomembrane system organization in Alzheimer’s disease. Adv Behav Biol. 34:61–75; Plenum Press, New York, NY

    Google Scholar 

  3. Terry RD (1998) The cytoskeleton in Alzheimer disease. J Neural Transm Suppl 53:141–145

    Article  PubMed  CAS  Google Scholar 

  4. Cash AD, Aliev G, Siedlak SL, Nunomura A, Fujioka H, Zhu X, Raina AK, Vinters HV, Tabaton M, Johnson AB, Paula-Barbosa M, Avila J, Jones PK, Castellani RJ, Smith MA, Perry G (2003) Microtubule reduction in Alzheimer’s disease and aging is independent of tau filament formation. Am J Pathol 162:1623–1627

    Article  PubMed  CAS  Google Scholar 

  5. Tanemura K, Murayama M, Akagi T, Hashikawa T, Tominaga T, Ichikawa M, Yamaguchi H, Takashima A (2002) Neurodegeneration with tau accumulation in a transgenic mouse expressing V337M human tau. J Neurosci 22:133–141

    PubMed  CAS  Google Scholar 

  6. Schaefer MK, Schmalbruch H, Buhler E, Lopez C, Martin N, Guenet JL, Haase G (2007) Progressive motor neuronopathy: a critical role of the tubulin chaperone TBCE in axonal tubulin routing from the Golgi apparatus. J Neurosci 27:8779–8789

    Article  PubMed  CAS  Google Scholar 

  7. Tang-Schomer MD, Patel AR, Baas PW, Smith DH (2010) Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration. FASEB J 24:1401–1410

    Article  PubMed  CAS  Google Scholar 

  8. Hall GF, Chu B, Lee G, Yao J (2000) Human tau filaments induce microtubule and synapse loss in an in vivo model of neurofibrillary degenerative disease. J Cell Sci 113(Pt 8):1373–1387

    PubMed  CAS  Google Scholar 

  9. Doran B, Gherbesi N, Hendricks G, Flavell RA, Davis RJ, Gangwani L (2006) Deficiency of the zinc finger protein ZPR1 causes neurodegeneration. Proc Natl Acad Sci USA 103:7471–7475

    Article  PubMed  CAS  Google Scholar 

  10. Benitez-King G, Ramirez-Rodriguez G, Ortiz L, Meza I (2004) The neuronal cytoskeleton as a potential therapeutical target in neurodegenerative diseases and schizophrenia. Curr Drug Targets CNS Neurol Disord 3:515–533

    Article  PubMed  CAS  Google Scholar 

  11. Calne DB, Eisen A (1989) The relationship between Alzheimer’s disease, Parkinson’s disease and motor neuron disease. Can J Neurol Sci 16:547–550

    PubMed  CAS  Google Scholar 

  12. McMurray CT (2000) Neurodegeneration: diseases of the cytoskeleton? Cell Death Differ 7:861–865

    Article  PubMed  CAS  Google Scholar 

  13. Pollak D, Cairns N, Lubec G (2003) Cytoskeleton derangement in brain of patients with Down syndrome, Alzheimer’s disease and Pick’s disease. J Neural Transm Suppl 67:149–158

    Article  PubMed  CAS  Google Scholar 

  14. Morrison JH, Hof PR (1997) Life and death of neurons in the aging brain. Science 278:412–419

    Article  PubMed  CAS  Google Scholar 

  15. Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW (1991) The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb Cortex 1:103–116

    Article  PubMed  CAS  Google Scholar 

  16. Samuel W, Terry RD, DeTeresa R, Butters N, Masliah E (1994) Clinical correlates of cortical and nucleus basalis pathology in Alzheimer dementia. Arch Neurol 51:772–778

    Article  PubMed  CAS  Google Scholar 

  17. Le WD, Colom LV, Xie WJ, Smith RG, Alexianu M, Appel SH (1995) Cell death induced by beta-amyloid 1–40 in MES 23.5 hybrid clone: the role of nitric oxide and NMDA-gated channel activation leading to apoptosis. Brain Res 686:49–60

    Article  PubMed  CAS  Google Scholar 

  18. Mukrasch MD, Biernat J, von Bergen M, Griesinger C, Mandelkow E, Zweckstetter M (2005) Sites of tau important for aggregation populate {beta}-structure and bind to microtubules and polyanions. J Biol Chem 280:24978–24986

    Article  PubMed  CAS  Google Scholar 

  19. Hyman BT, Augustinack JC, Ingelsson M (2005) Transcriptional and conformational changes of the tau molecule in Alzheimer’s disease. Biochim Biophys Acta 1739:150–157

    Article  PubMed  CAS  Google Scholar 

  20. Higuchi M, Lee VM, Trojanowski JQ (2002) Tau and axonopathy in neurodegenerative disorders. Neuromolecular Med 2:131–150

    Article  PubMed  CAS  Google Scholar 

  21. LaFerla FM, Oddo S (2005) Alzheimer’s disease: Abeta, tau and synaptic dysfunction. Trends Mol Med 11:170–176

    Article  PubMed  CAS  Google Scholar 

  22. Williams DR (2006) Tauopathies: classification and clinical update on neurodegenerative diseases associated with microtubule-associated protein tau. Intern Med J 36:652–660

    Article  PubMed  CAS  Google Scholar 

  23. Buee L, Delacourte A (1999) Comparative biochemistry of tau in progressive supranuclear palsy, corticobasal degeneration, FTDP-17 and Pick’s disease. Brain Pathol 9:681–693

    Article  PubMed  CAS  Google Scholar 

  24. Martin LJ, Price AC, Kaiser A, Shaikh AY, Liu Z (2000) Mechanisms for neuronal degeneration in amyotrophic lateral sclerosis and in models of motor neuron death (Review). Int J Mol Med 5:3–13

    PubMed  CAS  Google Scholar 

  25. Hirokawa N (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279:519–526

    Article  PubMed  CAS  Google Scholar 

  26. Williamson TL, Cleveland DW (1999) Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nat Neurosci 2:50–56

    Article  PubMed  CAS  Google Scholar 

  27. Eiserich JP, Estevez AG, Bamberg TV, Ye YZ, Chumley PH, Beckman JS, Freeman BA (1999) Microtubule dysfunction by posttranslational nitrotyrosination of alpha-tubulin: a nitric oxide-dependent mechanism of cellular injury. Proc Natl Acad Sci USA 96:6365–6370

    Article  PubMed  CAS  Google Scholar 

  28. Arnold SE, Hyman BT, Van Hoesen GW, Damasio AR (1991) Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Arch Gen Psychiatry 48:625–632

    Article  PubMed  CAS  Google Scholar 

  29. Arnold SE, Lee VM, Gur RE, Trojanowski JQ (1991) Abnormal expression of two microtubule-associated proteins (MAP2 and MAP5) in specific subfields of the hippocampal formation in schizophrenia. Proc Natl Acad Sci USA 88:10850–10854

    Article  PubMed  CAS  Google Scholar 

  30. Shimizu H, Iwayama Y, Yamada K, Toyota T, Minabe Y, Nakamura K, Nakajima M, Hattori E, Mori N, Osumi N, Yoshikawa T (2006) Genetic and expression analyses of the STOP (MAP6) gene in schizophrenia. Schizophr Res 84:244–252

    Article  PubMed  Google Scholar 

  31. Chubb JE, Bradshaw NJ, Soares DC, Porteous DJ, Millar JK (2008) The DISC locus in psychiatric illness. Mol Psychiatry 13:36–64

    Article  PubMed  CAS  Google Scholar 

  32. Cannon TD, Hennah W, van Erp TG, Thompson PM, Lonnqvist J, Huttunen M, Gasperoni T, Tuulio-Henriksson A, Pirkola T, Toga AW, Kaprio J, Mazziotta J, Peltonen L (2005) Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter, and impaired short- and long-term memory. Arch Gen Psychiatry 62:1205–1213

    Article  PubMed  CAS  Google Scholar 

  33. Kaibuchi K, Tsuboi D (2010) Current perspective on the pathogenesis of schizophrenia from the viewpoint of risk factors such as DISC1 (corrected). Nihon Shinkei Seishin Yakurigaku Zasshi 30:149–152

    PubMed  CAS  Google Scholar 

  34. Lafanechere L, Job D (2000) The third tubulin pool. Neurochem Res 25:11–18

    Article  PubMed  CAS  Google Scholar 

  35. Barra HS, Arce CA, Argarana CE (1988) Posttranslational tyrosination/detyrosination of tubulin. Mol Neurobiol 2:133–153

    Article  PubMed  CAS  Google Scholar 

  36. MacRae TH (1997) Tubulin post-translational modifications—enzymes and their mechanisms of action. Eur J Biochem 244:265–278

    Article  PubMed  CAS  Google Scholar 

  37. Sahab ZJ, Hall MD, Me Sung Y, Dakshanamurthy S, Ji Y, Kumar D, Byers SW (2011) Tumor suppressor RARRES1 interacts with cytoplasmic carboxypeptidase AGBL2 to regulate the alpha-tubulin tyrosination cycle. Cancer Res 71:1219–1228

    Article  PubMed  CAS  Google Scholar 

  38. Wehland J, Weber K (1987) Turnover of the carboxy-terminal tyrosine of alpha-tubulin and means of reaching elevated levels of detyrosination in living cells. J Cell Sci 88(Pt 2):185–203

    PubMed  CAS  Google Scholar 

  39. Wehland J, Weber K (1987) Tubulin-tyrosine ligase has a binding site on beta-tubulin: a two-domain structure of the enzyme. J Cell Biol 104:1059–1067

    Article  PubMed  CAS  Google Scholar 

  40. Webster DR, Gundersen GG, Bulinski JC, Borisy GG (1987) Assembly and turnover of detyrosinated tubulin in vivo. J Cell Biol 105:265–276

    Article  PubMed  CAS  Google Scholar 

  41. Gundersen GG, Khawaja S, Bulinski JC (1987) Postpolymerization detyrosination of alpha-tubulin: a mechanism for subcellular differentiation of microtubules. J Cell Biol 105:251–264

    Article  PubMed  CAS  Google Scholar 

  42. Kreis TE (1987) Microtubules containing detyrosinated tubulin are less dynamic. EMBO J 6:2597–2606

    PubMed  CAS  Google Scholar 

  43. Gundersen GG, Kalnoski MH, Bulinski JC (1984) Distinct populations of microtubules: tyrosinated and nontyrosinated alpha tubulin are distributed differently in vivo. Cell 38:779–789

    Article  PubMed  CAS  Google Scholar 

  44. Schulze E, Asai DJ, Bulinski JC, Kirschner M (1987) Posttranslational modification and microtubule stability. J Cell Biol 105:2167–2177

    Article  PubMed  CAS  Google Scholar 

  45. Bosc C, Cronk JD, Pirollet F, Watterson DM, Haiech J, Job D, Margolis RL (1996) Cloning, expression, and properties of the microtubule-stabilizing protein STOP. Proc Natl Acad Sci USA 93:2125–2130

    Article  PubMed  CAS  Google Scholar 

  46. Westermann S, Weber K (2003) Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol 4:938–947

    Article  PubMed  CAS  Google Scholar 

  47. Webster DR, Wehland J, Weber K, Borisy GG (1990) Detyrosination of alpha tubulin does not stabilize microtubules in vivo. J Cell Biol 111:113–122

    Article  PubMed  CAS  Google Scholar 

  48. Brown A, Slaughter T, Black MM (1992) Newly assembled microtubules are concentrated in the proximal and distal regions of growing axons. J Cell Biol 119:867–882

    Article  PubMed  CAS  Google Scholar 

  49. Baas PW, Black MM (1990) Individual microtubules in the axon consist of domains that differ in both composition and stability. J Cell Biol 111:495–509

    Article  PubMed  CAS  Google Scholar 

  50. Baas PW, Ahmad FJ, Pienkowski TP, Brown A, Black MM (1993) Sites of microtubule stabilization for the axon. J Neurosci 13:2177–2185

    PubMed  CAS  Google Scholar 

  51. Shea TB (1999) Selective stabilization of microtubules within the proximal region of developing axonal neurites. Brain Res Bull 48:255–261

    Article  PubMed  CAS  Google Scholar 

  52. Dent EW, Gertler FB (2003) Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40:209–227

    Article  PubMed  CAS  Google Scholar 

  53. Fukushima N, Morita Y (2006) Actomyosin-dependent microtubule rearrangement in lysophosphatidic acid-induced neurite remodeling of young cortical neurons. Brain Res 1094:65–75

    Article  PubMed  CAS  Google Scholar 

  54. Mansfield SG, Gordon-Weeks PR (1991) Dynamic post-translational modification of tubulin in rat cerebral cortical neurons extending neurites in culture: effects of taxol. J Neurocytol 20:654–666

    Article  PubMed  CAS  Google Scholar 

  55. Witte H, Neukirchen D, Bradke F (2008) Microtubule stabilization specifies initial neuronal polarization. J Cell Biol 180:619–632

    Article  PubMed  CAS  Google Scholar 

  56. Yoshiyama Y, Zhang B, Bruce J, Trojanowski JQ, Lee VM (2003) Reduction of detyrosinated microtubules and Golgi fragmentation are linked to tau-induced degeneration in astrocytes. J Neurosci 23:10662–10671

    PubMed  CAS  Google Scholar 

  57. Gozes I, Littauer UZ (1978) Tubulin microheterogeneity increases with rat brain maturation. Nature 276:411–413

    Article  PubMed  CAS  Google Scholar 

  58. Gozes I, Sweadner KJ (1981) Multiple ­tubulin forms are expressed by a single neurone. Nature 294:477–480

    Article  PubMed  CAS  Google Scholar 

  59. Gozes I, Saya D, Littauer UZ (1979) Tubulin microheterogeneity in neuroblastoma and glioma cell lines differs from that of the brain. Brain Res 171:171–175

    Article  PubMed  CAS  Google Scholar 

  60. Schwarz PM, Liggins JR, Luduena RF (1998) Beta-tubulin isotypes purified from bovine brain have different relative stabilities. Biochemistry 37:4687–4692

    Article  PubMed  CAS  Google Scholar 

  61. Luduena RF (1998) Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol 178:207–275

    Article  PubMed  CAS  Google Scholar 

  62. Katsetos CD, Legido A, Perentes E, Mork SJ (2003) Class III beta-tubulin isotype: a key cytoskeletal protein at the crossroads of developmental neurobiology and tumor neuropathology. J Child Neurol 18:851–866, discussion 867

    Article  PubMed  Google Scholar 

  63. Katsetos CD, Herman MM, Mork SJ (2003) Class III beta-tubulin in human development and cancer. Cell Motil Cytoskeleton 55:77–96

    Article  PubMed  CAS  Google Scholar 

  64. Ferreira A, Caceres A (1992) Expression of the class III beta-tubulin isotype in developing neurons in culture. J Neurosci Res 32:516–529

    Article  PubMed  CAS  Google Scholar 

  65. Jiang YQ, Oblinger MM (1992) Differential regulation of beta III and other tubulin genes during peripheral and central neuron development. J Cell Sci 103(Pt 3):643–651

    PubMed  CAS  Google Scholar 

  66. Gard DL, Kirschner MW (1985) A polymer-dependent increase in phosphorylation of beta-tubulin accompanies differentiation of a mouse neuroblastoma cell line. J Cell Biol 100:764–774

    Article  PubMed  CAS  Google Scholar 

  67. Guo J, Qiang M, Luduena RF (2011) The distribution of beta-tubulin isotypes in cultured neurons from embryonic, newborn, and adult mouse brains. Brain Res 1420:8–18

    Article  PubMed  CAS  Google Scholar 

  68. Guo J, Walss-Bass C, Luduena RF (2010) The beta isotypes of tubulin in neuronal differentiation. Cytoskeleton (Hoboken) 67:431–441

    CAS  Google Scholar 

  69. Tischfield MA, Baris HN, Wu C, Rudolph G, Van Maldergem L, He W, Chan WM, Andrews C, Demer JL, Robertson RL, Mackey DA, Ruddle JB, Bird TD, Gottlob I, Pieh C, Traboulsi EI, Pomeroy SL, Hunter DG, Soul JS, Newlin A, Sabol LJ, Doherty EJ, de Uzcategui CE, de Uzcategui N, Collins ML, Sener EC, Wabbels B, Hellebrand H, Meitinger T, de Berardinis T, Magli A, Schiavi C, Pastore-Trossello M, Koc F, Wong AM, Levin AV, Geraghty MT, Descartes M, Flaherty M, Jamieson RV, Moller HU, Meuthen I, Callen DF, Kerwin J, Lindsay S, Meindl A, Gupta ML Jr, Pellman D, Engle EC (2010) Human TUBB3 mutations ­perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell 140:74–87

    Article  PubMed  CAS  Google Scholar 

  70. Sudo H, Baas PW (2010) Acetylation of microtubules influences their sensitivity to severing by katanin in neurons and fibroblasts. J Neurosci 30:7215–7226

    Article  PubMed  CAS  Google Scholar 

  71. Konishi Y, Setou M (2009) Tubulin tyrosination navigates the kinesin-1 motor domain to axons. Nat Neurosci 12:559–567

    Article  PubMed  CAS  Google Scholar 

  72. Hammond JW, Huang CF, Kaech S, Jacobson C, Banker G, Verhey KJ (2010) Posttranslational modifications of tubulin and the polarized transport of kinesin-1 in neurons. Mol Biol Cell 21:572–583

    Article  PubMed  CAS  Google Scholar 

  73. Lacroix B, van Dijk J, Gold ND, Guizetti J, Aldrian-Herrada G, Rogowski K, Gerlich DW, Janke C (2010) Tubulin polyglutamylation stimulates spastin-mediated microtubule severing. J Cell Biol 189:945–954

    Article  PubMed  CAS  Google Scholar 

  74. Verhey KJ, Gaertig J (2007) The tubulin code. Cell Cycle 6:2152–2160

    Article  PubMed  CAS  Google Scholar 

  75. Janke C, Kneussel M (2010) Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton. Trends Neurosci 33:362–372

    Article  PubMed  CAS  Google Scholar 

  76. Peris L, Wagenbach M, Lafanechere L, Brocard J, Moore AT, Kozielski F, Job D, Wordeman L, Andrieux A (2009) Motor-dependent microtubule disassembly driven by tubulin tyrosination. J Cell Biol 185:1159–1166

    Article  PubMed  CAS  Google Scholar 

  77. Divinski I, Mittelman L, Gozes I (2004) A femtomolar acting octapeptide interacts with tubulin and protects astrocytes against zinc intoxication. J Biol Chem 279:28531–28538

    Article  PubMed  CAS  Google Scholar 

  78. Gozes I, Divinski I (2007) NAP, a neuroprotective drug candidate in clinical trials, stimulates microtubule assembly in the living cell. Curr Alzheimer Res 4:507–509

    Article  PubMed  CAS  Google Scholar 

  79. Divinski I, Pilzer I, Gozes I (2008) Primary cell cultures and cell lines. Neuromethods 39:21

    Article  CAS  Google Scholar 

  80. Brenneman DE, Spong CY, Hauser JM, Abebe D, Pinhasov A, Golian T, Gozes I (2004) Protective peptides that are orally active and mechanistically nonchiral. J Pharmacol Exp Ther 309:1190–1197

    Article  PubMed  CAS  Google Scholar 

  81. Romijn HJ, Habets AM, Mud MT, Wolters PS (1981) Nerve outgrowth, synaptogenesis and bioelectric activity in fetal rat cerebral cortex tissue cultured in serum-free, chemically defined medium. Brain Res 254:583–589

    PubMed  CAS  Google Scholar 

  82. Lamoureux P, Steel VL, Regal C, Adgate L, Buxbaum RE, Heidemann SR (1990) Extracellular matrix allows PC12 neurite elongation in the absence of microtubules. J Cell Biol 110:71–79

    Article  PubMed  CAS  Google Scholar 

  83. Smith PK, Krohn RI, Hermanson GF, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein binding using bicinchoninic acid. Anal Biochem 150:76–85

    Article  PubMed  CAS  Google Scholar 

  84. Wiechelman KJ, Braun RD, Fitzpatrick JD (1988) Investigation of the bicinchoninic acid protein assay: identification of the groups responsible for color formation. Anal Biochem 175:231–237

    Article  PubMed  CAS  Google Scholar 

  85. Vassal E, Barette C, Fonrose X, Dupont R, Sans-Soleilhac E, Lafanechere L (2006) Miniaturization and validation of a sensitive multiparametric cell-based assay for the concomitant detection of microtubule-destabilizing and microtubule-stabilizing agents. J Biomol Screen 11:377

    Article  PubMed  CAS  Google Scholar 

  86. Mandel S, Rechavi G, Gozes I (2007) Activity-dependent neuroprotective protein (ADNP) differentially interacts with chromatin to regulate genes essential for embryogenesis. Dev Biol 303:814–824

    Article  PubMed  CAS  Google Scholar 

  87. Dresner E, Agam G, Gozes I (2011) Activity-dependent neuroprotective protein (ADNP) expression level is correlated with the expression of the sister protein ADNP2: deregulation in schizophrenia. Eur Neuropsychopharmacol 21:355–361

    Article  PubMed  CAS  Google Scholar 

  88. Smith-Swintosky VL, Gozes I, Brenneman DE, D’Andrea MR, Plata-Salaman CR (2005) Activity-dependent neurotrophic factor-9 and NAP promote neurite outgrowth in rat hippocampal and cortical cultures. J Mol Neurosci 25:225–238

    Article  PubMed  CAS  Google Scholar 

  89. Zemlyak I, Manley N, Sapolsky R, Gozes I (2007) NAP protects hippocampal neurons against multiple toxins. Peptides 28:2004–2008

    Article  PubMed  CAS  Google Scholar 

  90. Gozes I, Divinski I (2004) The femtomolar-acting NAP interacts with microtubules: novel aspects of astrocyte protection. J Alzheimers Dis 6:S37–S41

    PubMed  CAS  Google Scholar 

  91. Vulih-Shultzman I, Pinhasov A, Mandel S, Grigoriadis N, Touloumi O, Pittel Z, Gozes I (2007) Activity-dependent neuroprotective protein snippet NAP reduces tau hyperphosphorylation and enhances learning in a novel transgenic mouse model. J Pharmacol Exp Ther 323:438–449

    Article  PubMed  CAS  Google Scholar 

  92. Matsuoka Y, Gray AJ, Hirata-Fukae C, Minami SS, Waterhouse EG, Mattson MP, LaFerla FM, Gozes I, Aisen PS (2007) Intranasal NAP administration reduces accumulation of amyloid peptide and tau hyperphosphorylation in a transgenic mouse model of Alzheimer’s disease at early pathological stage. J Mol Neurosci 31:165–170

    PubMed  CAS  Google Scholar 

  93. Matsuoka Y, Jouroukhin Y, Gray AJ, Ma L, Hirata-Fukae C, Li HF, Feng L, Lecanu L, Walker BR, Planel E, Arancio O, Gozes I, Aisen PS (2008) A neuronal microtubule-interacting agent, NAPVSIPQ, reduces tau pathology and enhances cognitive function in a mouse model of Alzheimer’s disease. J Pharmacol Exp Ther 325:146–153

    Article  PubMed  CAS  Google Scholar 

  94. Shiryaev N, Jouroukhin Y, Giladi E, Polyzoidou E, Grigoriadis NC, Rosenmann H, Gozes I (2009) NAP protects memory, increases soluble tau and reduces tau hyperphosphorylation in a tauopathy model. Neurobiol Dis 34:381–388

    Article  PubMed  CAS  Google Scholar 

  95. Shiryaev N, Pickman R, Giladi E, Gozes I (2011) Protection against tauopathy by the drug candidates NAP (davunetide) and d-SAL: biochemical, cellular and behavioral aspects. Curr Pharm Des 17:2603–2612

    Article  PubMed  CAS  Google Scholar 

  96. Gozes I (2010) Tau pathology and future therapeutics. Curr Alzheimer Res 7:685–696

    Article  PubMed  CAS  Google Scholar 

  97. Li X, Kumar Y, Zempel H, Mandelkow EM, Biernat J, Mandelkow E (2011) Novel diffusion barrier for axonal retention of Tau in neurons and its failure in neurodegeneration. EMBO J 30:4825–4837

    Article  PubMed  CAS  Google Scholar 

  98. Shprung T, Gozes I (2009) A novel method for analyzing mitochondrial movement: inhibition by paclitaxel in a pheochromocytoma cell model. J Mol Neurosci 37:254–262

    Article  PubMed  CAS  Google Scholar 

  99. Zhang B, Maiti A, Shively S, Lakhani F, McDonald-Jones G, Bruce J, Lee EB, Xie SX, Joyce S, Li C, Toleikis PM, Lee VM, Trojanowski JQ (2005) Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc Natl Acad Sci USA 102:227–231

    Article  PubMed  CAS  Google Scholar 

  100. LaPointe NE, Morfini G, Pigino G, Gaisina IN, Kozikowski AP, Binder LI, Brady ST (2009) The amino terminus of tau inhibits kinesin-dependent axonal transport: implications for filament toxicity. J Neurosci Res 87:440–451

    Article  PubMed  CAS  Google Scholar 

  101. Massaad CA, Pautler RG (2011) Manganese-enhanced magnetic resonance imaging (MEMRI). Methods Mol Biol 711:145–174

    Article  PubMed  CAS  Google Scholar 

  102. Merenlender-Wagner A, Pikman R, Giladi E, Andrieux A, Gozes I (2010) NAP (davunetide) enhances cognitive behavior in the STOP heterozygous mouse—a microtubule-deficient model of schizophrenia. Peptides 31:1368–1373

    Article  PubMed  CAS  Google Scholar 

  103. Sudo H, Baas PW (2011) Strategies for diminishing katanin-based loss of microtubules in tauopathic neurodegenerative diseases. Hum Mol Genet 20:763–778

    Article  PubMed  CAS  Google Scholar 

  104. Gozes I (2011) Microtubules (tau) as an emerging Therapeutic Target: NAP (davunetide). Curr Pharm Des 17:3413–3417

    Article  PubMed  CAS  Google Scholar 

  105. Gozes I (2011) NAP (davunetide) provides functional and structural neuroprotection. Curr Pharm Des 17:1040–1044

    Article  PubMed  CAS  Google Scholar 

  106. Gozes I (2011) Microtubules, schizophrenia and cognitive behavior: preclinical development of davunetide (NAP) as a peptide-drug candidate. Peptides 32:428–431

    Article  PubMed  CAS  Google Scholar 

  107. Conde C, Caceres A (2009) Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci 10:319–332

    Article  PubMed  CAS  Google Scholar 

  108. Janke C, Chloe Bulinski J (2011) Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol 12:773–786

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iliana Gozes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Oz, S., Gozes, I. (2013). The Cytoskeleton as a Pharmacological Target in Neurodegenerative Diseases. In: Dermietzel, R. (eds) The Cytoskeleton. Neuromethods, vol 79. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-266-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-266-7_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-265-0

  • Online ISBN: 978-1-62703-266-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics