Skip to main content

From an Axon into a Growth Cone After Axotomy: A Model for Cytoskeletal Dynamics

  • Protocol
  • First Online:
The Cytoskeleton

Part of the book series: Neuromethods ((NM,volume 79))

Abstract

Using live confocal microscope imaging of molecular probes, retrospective immunolabeling, classical electron microscopy, and cultured Aplysia neurons this chapter describes the experimental approaches to document the cascades of cytoskeleton remodeling that underlie the transformation of a cut axonal-end into a growth cone (GC). Rapture of the axon’s plasma membrane is followed by massive influx of calcium through the cut end, leading to depolymerization of the microtubules (MTs) and the actin filaments. The elevated free intracellular calcium concentration ([Ca2+]i) activates calpain which cleaves the submembrane spectrin skeleton. Repair of the ruptured membrane barrier is followed by the recovery of the (Ca2+)i and the restructuring of the cytoskeleton in a way that totally differs from that of a differentiated axon. The typical unipolar orientation of axonal MTs is changed to form two distinct MT-based vesicle traps. One traps capture and concentrates anterogradely transported Golgi-derived vesicles while the other concentrates retrogradely transported vesicles. The trapped Golgi-derived vesicles fuse with the plasma membrane from which the submembrane spectrin skeleton was removed by calpain. Actin filaments repolymerize to form radially oriented bundles that generate the mechanical force underlying the extension of the GC’s lamellipodium. Feedback interactions between the cytoskeletal elements and the transported cargo as well as interactions with membrane targets participate in the definition of cytoskeleton restructuring and the formation of competent GCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hur EM, Saijilafu, Zhou FQ (2012) Growing the growth cone: remodeling the cytoskeleton to promote axon regeneration. Trends Neurosci 35:164–174

    Article  PubMed  CAS  Google Scholar 

  2. Lowery LA, Van Vactor D (2009) The trip of the tip: understanding the growth cone machinery. Nat Rev Mol Cell Biol 10:332–343

    Article  PubMed  CAS  Google Scholar 

  3. Dent EW, Gupton SL, Gertler FB (2011) The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harb Perspect Biol 3:1–40

    Google Scholar 

  4. McCormick AM, Leipzig ND (2012) Neural regenerative strategies incorporating biomolecular axon guidance signals. Ann Biomed Eng 40:578–597

    Article  PubMed  Google Scholar 

  5. Kandel ER (2001) The molecular biology of memory storage: a dialog between genes and synapses. Biosci Rep 21:565–611

    Article  PubMed  CAS  Google Scholar 

  6. Glanzman DL (2009) Habituation in Aplysia: the cheshire cat of neurobiology. Neurobiol Learn Mem 92:147–154

    Article  PubMed  CAS  Google Scholar 

  7. Baxter DA, Byrne JH (2006) Feeding behavior of Aplysia: a model system for comparing cellular mechanisms of classical and operant conditioning. Learn Mem 13:669–680

    Article  PubMed  CAS  Google Scholar 

  8. Forscher P, Smith SJ (1988) Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. J Cell Biol 107:1505–1516

    Article  PubMed  CAS  Google Scholar 

  9. Lin CH, Forscher P (1993) Cytoskeletal remodeling during growth cone-target interactions. J Cell Biol 121:1369–1383

    Article  PubMed  CAS  Google Scholar 

  10. Suter DM, Forscher P (2000) Substrate-cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance. J Neurobiol 44:97–113

    Article  PubMed  CAS  Google Scholar 

  11. Ambron RT, Zhang XP, Gunstream JD, Povelones M, Walters ET (1996) Intrinsic injury signals enhance growth, survival, and excitability of Aplysia neurons. J Neurosci 16:7469–7477

    PubMed  CAS  Google Scholar 

  12. Ambron RT, Walters ET (1996) Priming events and retrograde injury signals. A new perspective on the cellular and molecular biology of nerve regeneration. Mol Neurobiol 13:61–79

    Article  PubMed  CAS  Google Scholar 

  13. Sung YJ, Ambron RT (2004) Pathways that elicit long-term changes in gene expression in nociceptive neurons following nerve injury: contributions to neuropathic pain. Neurol Res 26:195–203

    Article  PubMed  CAS  Google Scholar 

  14. Rishal I, Fainzilber M (2010) Retrograde signaling in axonal regeneration. Exp Neurol 223:5–10

    Article  PubMed  CAS  Google Scholar 

  15. Ashery U, Penner R, Spira ME (1996) Acceleration of membrane recycling by axotomy of cultured Aplysia neurons. Neuron 16:641–651

    Article  PubMed  CAS  Google Scholar 

  16. Benbassat D, Spira ME (1993) Survival of isolated axonal segments in culture: morphological, ultrastructural, and physiological analysis. Exp Neurol 122:295–310

    Article  PubMed  CAS  Google Scholar 

  17. Erez H, Malkinson G, Prager-Khoutorsky M, De Zeeuw CI, Hoogenraad CC, Spira ME (2007) Formation of microtubule-based traps controls the sorting and concentration of vesicles to restricted sites of regenerating neurons after axotomy. J Cell Biol 176:497–507

    Article  PubMed  CAS  Google Scholar 

  18. Erez H, Spira ME (2008) Local self-assembly mechanisms underlie the differential transformation of the proximal and distal cut axonal ends into functional and aberrant growth cones. J Comp Neurol 507:1019–1030

    Article  PubMed  Google Scholar 

  19. Gitler D, Spira ME (1998) Real time imaging of calcium-induced localized proteolytic activity after axotomy and its relation to growth cone formation. Neuron 20:1123–1135

    Article  PubMed  CAS  Google Scholar 

  20. Gitler D, Spira ME (2002) Short window of opportunity for calpain induced growth cone formation after axotomy of Aplysia neurons. J Neurobiol 52:267–279

    Article  PubMed  CAS  Google Scholar 

  21. Kamber D, Erez H, Spira ME (2009) Local calcium-dependent mechanisms determine whether a cut axonal end assembles a retarded endbulb or competent growth cone. Exp Neurol 219:112–125

    Article  PubMed  CAS  Google Scholar 

  22. Prager-Khoutorsky M, Spira ME (2009) Neurite retraction and regrowth regulated by membrane retrieval, membrane supply, and actin dynamics. Brain Res 1251:65–79

    Article  PubMed  CAS  Google Scholar 

  23. Sahly I, Erez H, Khoutorsky A, Shapira E, Spira ME (2003) Effective expression of the green fluorescent fusion proteins in cultured Aplysia neurons. J Neurosci Methods 126:111–117

    Article  PubMed  CAS  Google Scholar 

  24. Sahly I, Khoutorsky A, Erez H, Prager-Khoutorsky M, Spira ME (2006) On-line confocal imaging of the events leading to structural dedifferentiation of an axonal segment into a growth cone after axotomy. J Comp Neurol 494:705–720

    Article  PubMed  Google Scholar 

  25. Spira ME, Benbassat D, Dormann A (1993) Resealing of the proximal and distal cut ends of transected axons: electrophysiological and ultrastructural analysis. J Neurobiol 24:300–316

    Article  PubMed  CAS  Google Scholar 

  26. Spira ME, Oren R, Dormann A, Gitler D (2003) Critical calpain-dependent ultrastructural alterations underlie the transformation of an axonal segment into a growth cone after axotomy of cultured Aplysia neurons. J Comp Neurol 457:293–312

    Article  PubMed  Google Scholar 

  27. Ziv NE, Spira ME (1993) Spatiotemporal distribution of Ca2+ following axotomy and throughout the recovery process of cultured Aplysia neurons. Eur J Neurosci 5:657–668

    Article  PubMed  CAS  Google Scholar 

  28. Ziv NE, Spira ME (1995) Axotomy induces a transient and localized elevation of the free intracellular calcium concentration to the millimolar range. J Neurophysiol 74:2625–2637

    PubMed  CAS  Google Scholar 

  29. Ziv NE, Spira ME (1997) Localized and transient elevations of intracellular Ca2+ induce the dedifferentiation of axonal segments into growth cones. J Neurosci 17:3568–3579

    PubMed  CAS  Google Scholar 

  30. Shemesh OA, Erez H, Ginzburg I, Spira ME (2008) Tau-induced traffic jams reflect organelles accumulation at points of microtubule polar mismatching. Traffic 9:458–471

    Article  PubMed  CAS  Google Scholar 

  31. Shemesh OA, Spira ME (2010) Paclitaxel induces axonal microtubules polar reconfiguration and impaired organelle transport: implications for the pathogenesis of paclitaxel-induced polyneuropathy. Acta Neuropathol 119:235–248

    Article  PubMed  CAS  Google Scholar 

  32. Shemesh OA, Spira ME (2010) Hallmark cellular pathology of Alzheimer’s disease induced by mutant human tau expression in cultured Aplysia neurons. Acta Neuropathol 120:209–222

    Article  PubMed  CAS  Google Scholar 

  33. Shemesh OA, Spira ME (2011) Rescue of neurons from undergoing hallmark tau-induced Alzheimer’s disease cell pathologies by the antimitotic drug paclitaxel. Neurobiol Dis 43:163–175

    Article  PubMed  CAS  Google Scholar 

  34. Malkinson G, Spira ME (2006) Calcium concentration threshold and translocation kinetics of EGFP-DOC2B expressed in cultured Aplysia neurons. Cell Calcium 39:85–93

    Article  PubMed  CAS  Google Scholar 

  35. Malkinson G, Fridman ZM, Kamber D, Dormann A, Shapira E, Spira ME (2006) Calcium-induced exocytosis from actomyosin-driven, motile varicosities formed by dynamic clusters of organelles. Brain Cell Biol 35:57–73

    Article  PubMed  CAS  Google Scholar 

  36. Malkinson G, Spira ME (2010) Clustering of excess growth resources within leading growth cones underlies the recurrent “deposition” of varicosities along developing neurites. Exp Neurol 225:140–153

    Article  PubMed  Google Scholar 

  37. Gabso M, Neher E, Spira ME (1997) Low mobility of the Ca2+ buffers in axons of cultured Aplysia neurons. Neuron 18:473–481

    Article  PubMed  CAS  Google Scholar 

  38. Schacher S, Proshansky E (1983) Neurite regeneration by Aplysia neurons in dissociated cell culture: modulation by Aplysia hemolymph and the presence of the initial axonal segment. J Neurosci 3:2403–2413

    PubMed  CAS  Google Scholar 

  39. Spira ME, Dormann A, Ashery U, Gabso M, Gitler D, Benbassat D, Oren R, Ziv NE (1996) Use of Aplysia neurons for the study of cellular alterations and the resealing of transected axons in vitro. J Neurosci Methods 69:91–102

    Article  PubMed  CAS  Google Scholar 

  40. Stiess M, Bradke F (2011) Neuronal polarization: the cytoskeleton leads the way. Dev Neurobiol 71:430–444

    Article  PubMed  CAS  Google Scholar 

  41. Tang-Schomer MD, Johnson VE, Baas PW, Stewart W, Smith DH (2012) Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury. Exp Neurol 233:364–372

    Article  PubMed  Google Scholar 

  42. Heidemann SR, McIntosh JR (1980) Visualization of the structural polarity of microtubules. Nature 286:517–519

    Article  PubMed  CAS  Google Scholar 

  43. McIntosh JR, Euteneuer U (1984) Tubulin hooks as probes for microtubule polarity: an analysis of the method and an evaluation of data on microtubule polarity in the mitotic spindle. J Cell Biol 98:525–533

    Article  PubMed  CAS  Google Scholar 

  44. Baas PW, Black MM, Banker GA (1989) Changes in microtubule polarity orientation during the development of hippocampal neurons in culture. J Cell Biol 109:3085–3094

    Article  PubMed  CAS  Google Scholar 

  45. Heidemann SR (1991) Microtubule polarity determination based on formation of protofilament hooks. Methods Enzymol 196:469–477

    Article  PubMed  CAS  Google Scholar 

  46. Baas PW, Lin S (2011) Hooks and comets: the story of microtubule polarity orientation in the neuron. Dev Neurobiol 71:403–418

    Article  PubMed  CAS  Google Scholar 

  47. Takahashi D, Yu W, Baas PW, Kawai-Hirai R, Hayashi K (2007) Rearrangement of microtubule polarity orientation during conversion of dendrites to axons in cultured pyramidal neurons. Cell Motil Cytoskeleton 64:347–359

    Article  PubMed  Google Scholar 

  48. Tsien RY (2010) Nobel lecture: constructing and exploiting the fluorescent protein paintbox. Integr Biol (Camb) 2:77–93

    Article  CAS  Google Scholar 

  49. Kaang BK (1996) Parameters influencing ectopic gene expression in Aplysia neurons. Neurosci Lett 221:29–32

    Article  PubMed  CAS  Google Scholar 

  50. Keating TJ, Peloquin JG, Rodionov VI, Momcilovic D, Borisy GG (1997) Microtubule release from the centrosome. Proc Natl Acad Sci U S A 94:5078–5083

    Article  PubMed  CAS  Google Scholar 

  51. Schroer TA (2001) Microtubules don and doff their caps: dynamic attachments at plus and minus ends. Curr Opin Cell Biol 13:92–96

    Article  PubMed  CAS  Google Scholar 

  52. Carvalho P, Tirnauer JS, Pellman D (2003) Surfing on microtubule ends. Trends Cell Biol 13:229–237

    Article  PubMed  CAS  Google Scholar 

  53. Mimori-Kiyosue Y, Tsukita S (2003) “Search-and-capture” of microtubules through plus-end-binding proteins (+TIPs). J Biochem 134:321–326

    Article  PubMed  CAS  Google Scholar 

  54. Akhmanova A, Hoogenraad CC (2005) Microtubule plus-end-tracking proteins: mechanisms and functions. Curr Opin Cell Biol 17:47–54

    Article  PubMed  CAS  Google Scholar 

  55. Stepanova T, Slemmer J, Hoogenraad CC, Lansbergen G, Dortland B, De Zeeuw CI, Grosveld F, van Cappellen G, Akhmanova A, Galjart N (2003) Visualization of microtubule growth in cultured neurons via the use of ­EB3-GFP (end-binding protein 3-green fluorescent protein). J Neurosci 23:2655–2664

    PubMed  CAS  Google Scholar 

  56. Ahmad FJ, He Y, Myers KA, Hasaka TP, Francis F, Black MM, Baas PW (2006) Effects of dynactin disruption and dynein depletion on axonal microtubules. Traffic 7:524–537

    Article  PubMed  CAS  Google Scholar 

  57. Kim T, Chang S (2006) Quantitative evaluation of the mode of microtubule transport in Xenopus neurons. Mol Cells 21:76–81

    PubMed  CAS  Google Scholar 

  58. Nakagawa H, Koyama K, Murata Y, Morito M, Akiyama T, Nakamura Y (2000) EB3, a novel member of the EB1 family preferentially expressed in the central nervous system, binds to a CNS-specific APC homologue. Oncogene 19:210–216

    Article  PubMed  CAS  Google Scholar 

  59. Perez F, Diamantopoulos GS, Stalder R, Kreis TE (1999) CLIP-170 highlights growing microtubule ends in vivo. Cell 96:517–527

    Article  PubMed  CAS  Google Scholar 

  60. Jaworski J, Hoogenraad CC, Akhmanova A (2008) Microtubule plus-end tracking proteins in differentiated mammalian cells. Int J Biochem Cell Biol 40:619–637

    Article  PubMed  CAS  Google Scholar 

  61. Pak CW, Flynn KC, Bamburg JR (2008) Actin-binding proteins take the reins in growth cones. Nat Rev Neurosci 9:136–147

    Article  PubMed  CAS  Google Scholar 

  62. Bosch M, Hayashi Y (2012) Structural plasticity of dendritic spines. Curr Opin Neurobiol 22:383–388

    Article  PubMed  CAS  Google Scholar 

  63. Shupliakov O, Haucke V, Pechstein A (2011) How synapsin I may cluster synaptic vesicles. Semin Cell Dev Biol 22:393–399

    Article  PubMed  CAS  Google Scholar 

  64. Flynn KC, Pak CW, Shaw AE, Bradke F, Bamburg JR (2009) Growth cone-like waves transport actin and promote axonogenesis and neurite branching. Dev Neurobiol 69:761–779

    Article  PubMed  CAS  Google Scholar 

  65. Waterman-Storer CM, Desai A, Bulinski JC, Salmon ED (1998) Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. Curr Biol 8:1227–1230

    Article  PubMed  CAS  Google Scholar 

  66. Schaefer AW, Kabir N, Forscher P (2002) Filopodia and actin arcs guide the assembly and transport of two populations of microtubules with unique dynamic parameters in neuronal growth cones. J Cell Biol 158:139–152

    Article  PubMed  CAS  Google Scholar 

  67. Schaefer AW, Schoonderwoert VT, Ji L, Mederios N, Danuser G, Forscher P (2008) Coordination of actin filament and microtubule dynamics during neurite outgrowth. Dev Cell 15:146–162

    Article  PubMed  CAS  Google Scholar 

  68. Hynes RO, Lander AD (1992) Contact and adhesive specificities in the associations, migrations, and targeting of cells and axons. Cell 68:303–322

    Article  PubMed  CAS  Google Scholar 

  69. Schoenwaelder SM, Burridge K (1999) Bidirectional signaling between the cytoskeleton and integrins. Curr Opin Cell Biol 11:274–286

    Article  PubMed  CAS  Google Scholar 

  70. Machnicka B, Grochowalska R, Boguslawska DM, Sikorski AF, Lecomte MC (2012) Spectrin-based skeleton as an actor in cell signaling. Cell Mol Life Sci 69:191–201

    Article  PubMed  CAS  Google Scholar 

  71. Li J, Li XY, Feng DF, Pan DC (2010) Biomarkers associated with diffuse traumatic axonal injury: exploring pathogenesis, early diagnosis, and prognosis. J Trauma 69:1610–1618

    Article  PubMed  CAS  Google Scholar 

  72. Grinvald A, Hildesheim R, Farber IC, Anglister L (1982) Improved fluorescent probes for the measurement of rapid changes in membrane potential. Biophys J 39:301–308

    Article  PubMed  CAS  Google Scholar 

  73. Sankaranarayanan S, De Angelis D, Rothman JE, Ryan TA (2000) The use of pHluorins for optical measurements of presynaptic activity. Biophys J 79:2199–2208

    Article  PubMed  CAS  Google Scholar 

  74. Oyler GA, Higgins GA, Hart RA, Battenberg E, Billingsley M, Bloom FE, Wilson MC (1989) The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J Cell Biol 109:3039–3052

    Article  PubMed  CAS  Google Scholar 

  75. Kimura K, Mizoguchi A, Ide C (2003) Regulation of growth cone extension by SNARE proteins. J Histochem Cytochem 51:429–433

    Article  PubMed  CAS  Google Scholar 

  76. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  PubMed  CAS  Google Scholar 

  77. Teng H, Cole JC, Roberts RL, Wilkinson RS (1999) Endocytic active zones: hot spots for endocytosis in vertebrate neuromuscular terminals. J Neurosci 19:4855–4866

    PubMed  CAS  Google Scholar 

  78. Mimori-Kiyosue Y (2011) Shaping microtubules into diverse patterns: molecular connections for setting up both ends. Cytoskeleton (Hoboken) 68:603–618

    CAS  Google Scholar 

  79. McNiven MA, Wang M, Porter KR (1984) Microtubule polarity and the direction of pigment transport reverse simultaneously in surgically severed melanophore arms. Cell 37:753–765

    Article  PubMed  CAS  Google Scholar 

  80. Cytrynbaum EN, Rodionov V, Mogilner A (2004) Computational model of dynein-­dependent self-organization of microtubule asters. J Cell Sci 117:1381–1397

    Article  PubMed  CAS  Google Scholar 

  81. Serbus LR, Cha BJ, Theurkauf WE, Saxton WM (2005) Dynein and the actin cytoskeleton control kinesin-driven cytoplasmic streaming in Drosophila oocytes. Development 132:3743–3752

    Article  PubMed  CAS  Google Scholar 

  82. Kirschner M, Mitchison T (1986) Beyond ­self-assembly: from microtubules to morphogenesis. Cell 45:329–342

    Article  PubMed  CAS  Google Scholar 

  83. Vorobjev I, Malikov V, Rodionov V (2001) Self-organization of a radial microtubule array by dynein-dependent nucleation of microtubules. Proc Natl Acad Sci U S A 98:10160–10165

    Article  PubMed  CAS  Google Scholar 

  84. Malikov V, Cytrynbaum EN, Kashina A, Mogilner A, Rodionov V (2005) Centering of a radial microtubule array by translocation along microtubules spontaneously nucleated in the cytoplasm. Nat Cell Biol 7:1113–1118

    Article  CAS  Google Scholar 

  85. Oren R, Dormann A, Benbassat D, Spira ME (1997) In: Teelken A, Korf J (eds) Neurochemistry: cellular, molecular and clinical aspects. Plenum, New York, pp 647–653

    Google Scholar 

  86. Benbassat D, Spira ME (1994) The survival of transected axonal segments of cultured Aplysia neurons is prolonged by contact with intact nerve cells. Eur J Neurosci 6:1605–1614

    Article  PubMed  CAS  Google Scholar 

  87. Schacher S, Wu F (2002) Synapse formation in the absence of cell bodies requires protein synthesis. J Neurosci 22:1831–1839

    PubMed  CAS  Google Scholar 

  88. Martin KC, Casadio A, Zhu H, Yaping E, Rose JC, Chen M, Bailey CH, Kandel ER (1997) Synapse-specific, long-term facilitation of aplysia sensory to motor synapses: a function for local protein synthesis in memory storage. Cell 91:927–938

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micha E. Spira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Spira, M.E., Erez, H. (2013). From an Axon into a Growth Cone After Axotomy: A Model for Cytoskeletal Dynamics. In: Dermietzel, R. (eds) The Cytoskeleton. Neuromethods, vol 79. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-266-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-266-7_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-265-0

  • Online ISBN: 978-1-62703-266-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics