Skip to main content

Enantioseparations by High-Performance Liquid Chromatography Using Macrocyclic Glycopeptide-Based Chiral Stationary Phases: An Overview

  • Protocol
  • First Online:
Chiral Separations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 970))

Abstract

Since their introduction by Armstrong in 1994, macrocyclic antibiotic-based chiral stationary phases have proven their applicability for the chiral resolution of various types of racemates. The unique structure of macrocyclic glycopeptides and their large variety of interactive sites (e.g., hydrophobic pockets, hydroxyl, amino and carboxyl groups, halogen atoms, aromatic moieties, etc.) are the reason for their wide-ranging selectivity. The commercially available Chirobiotic™ phases, which display complementary characteristics, are capable of separating a broad variety of enantiomeric compounds with good efficiency, good column loadability, high reproducibility, and long-term stability. These are the major reasons for the use of macrocyclic antibiotic-based stationary phases in HPLC enantioseparations.

This overview chapter provides a brief summary of general aspects of macrocyclic antibiotic-based chiral stationary phases including their preparation and their application to direct enantioseparations of various racemates focusing on the literature published since 2004.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armstrong DW (1994) A new class of chiral selectors for enantiomeric separations by LC, TLC, GC, CE and SFC. In: Pittsburg conference abstracts, p. 572

    Google Scholar 

  2. Armstrong DW, Tang Y, Chen S, Zhou Y, Bagwill C, Chen J-R (1994) Macrocyclic antibiotics as a new class of chiral selectors for liquid-chromatography. Anal Chem 66:1473–1484

    Article  CAS  Google Scholar 

  3. Xiao TL, Armstrong DW (2004) Enantiomeric separation by HPLC using macrocyclic glycopeptide-based chiral stationary phases. In: Gübitz G, Schmid MG (eds) Chiral separations. Methods and protocols. Humana press, Totowa, pp 113–171

    Google Scholar 

  4. Beesley TE, Scott RPW (1998) Liquid chromato­graphy chiral stationary phases. In: Beesley TE, Scott RPW (eds) Chiral chromatography. Wiley, Chichester. pp. 221–263

    Google Scholar 

  5. Bojarski J (1999) Antibiotics as electrophoretic and chromatographic chiral selectors. Wiad Chem 53:235–247

    CAS  Google Scholar 

  6. Dolezalova M, Tkaczykova M (2000) Control of enantiomeric purity of drugs. Chem Listy 94:994–1003

    CAS  Google Scholar 

  7. Ward TJ, Farris AB (2001) Chiral separations using the macrocyclic antibiotics: a review. J Chromatogr A 906:73–89

    Article  PubMed  CAS  Google Scholar 

  8. Gasparrini F, D’Acquarica I, Misiti D, Pierini M, Villani C (2003) Natural and totally synthetic receptors in the innovative design of HPLC chiral stationary phases. Pure Appl Chem 75:407–412

    Article  CAS  Google Scholar 

  9. Dungelova M, Lehotay J, Rojkovicova T (2003) Chiral separations of drugs based on macrocyclic antibiotics in HPLC, SFC and CEC. Ceska Slov Farm 52:119–125

    PubMed  CAS  Google Scholar 

  10. Dungelova J, Lehotay J, Rojkovicova T (2004) HPLC chiral separations utilising macrocyclic antibiotics—a review. Chem Analit 49:1–17

    CAS  Google Scholar 

  11. Ali I, Kumerer K, Aboul-Enein HY (2006) Mechanistic principles in chiral separations using liquid chromatography and capillary electrophoresis. Chromatographia 63:295–307

    Article  CAS  Google Scholar 

  12. Beesley TE, Lee JT (2007) Chiral separation techniques, 3rd edn. Wiley, Weinheim

    Google Scholar 

  13. D’Acquarica I, Gasparrini F, Misiti D, Pierini M, Villani C (2008) HPLC chiral stationary phases containing macrocyclic antibiotics: practical aspects and recognition mechanism. Adv Chromatogr 46:109–173

    PubMed  Google Scholar 

  14. Ilisz I, Berkecz R, Peter A (2006) HPLC separation of amino acid enantiomeres and small peptides on macrocyclic antibiotic-based chiral stationary phases: a review. J Sep Sci 29:1305–1321

    Article  PubMed  CAS  Google Scholar 

  15. Ilisz I, Berkecz R, Peter A (2009) Retention mechanism of high-performance liquid chromatographic enantioseparation on macrocyclic glycopeptide-based chiral stationary phases. J Chromatogr A 1216:1845–1860

    Article  PubMed  CAS  Google Scholar 

  16. Ilisz I, Pataj Z, Peter A (2010) Macrocyclic glycopeptide-based chiral stationary phases in high performance liquid chromatographic analysis of amino acid enantiomers and related analogs. In: Fitzpatrick DW, Ulrich HJ (eds) Macrocyclic chemistry: new research developments. Nova, Hauppauge, pp 129–157

    Google Scholar 

  17. Gasper MP, Berthod A, Nair UB, Armstrong DW (1996) Comparison and modeling study of vancomycin, ristocetin A, and teicoplanin. Anal Chem 68:2501–2514

    Article  PubMed  CAS  Google Scholar 

  18. Gause GF, Brazhnikova MG, Lomakina NN, Berdnikova TF, Fedorova GB, Tokareva NL, Borisova VN, Batta GY (1989) Eremomycin—new glycopeptide antibiotic: chemical properties and structure. J Antibiot 42:1790–1799

    Article  PubMed  CAS  Google Scholar 

  19. Berdnikova TF, Shashkov AS, Katrukha GS, Lapchinskaya OA, Yurkevich NV, Grachev AA, Nifant’ev NE (2009) The structure of antibiotic eremomycin B. Russ J Bioorg Chem 35:497–503

    Article  CAS  Google Scholar 

  20. Nadkarni SR, Patel MV, Chatterjee S, Vijayakumar EK, Desikan KR, Blumbach J, Ganguli BN, Limbert M (1994) Balhimycin, a new glycopeptide antibiotic produced by Amycolatopsis sp. Y-86,21022. Taxonomy, production, isolation and biological activity. J Antibiot 47:334–341

    Article  PubMed  CAS  Google Scholar 

  21. Chatterjee S, Vijayakumar EKS, Nadkarni SR, Patel MV, Blumbach J, Ganguli BN (1994) Balhimycin, a new glycopeptide antibiotic with an unusual hydrated 3-amino-4-oxoaldopyranose sugar moiety. J Org Chem 59:3480–3484

    Article  CAS  Google Scholar 

  22. Pelzer S, Süßmuth R, Heckmann D, Recktenwald J, Huber P, Jung G, Wohlleben W (1999) Identification and analysis of the balhimycin biosynthetic gene cluster and its use for manipulating glycopeptide biosynthesis in Amycolatopsis mediterranei DSM5908. Antimicrob Agents Chemother 43:1565–1573

    PubMed  CAS  Google Scholar 

  23. Astec (2004) Chirobiotic handbook, guide to using macrocyclic glycopeptode bonded phases for chiral LC separations, 5th edn. Astec, Advanced Separation Technologies Inc, Whippany, NJ

    Google Scholar 

  24. Beesley TE, Lee JT (2009) Method development strategy and applications update for chirobiotic chiral stationary phases. J Liquid Chromatogr Rel Technol 32:1733–1767

    Article  CAS  Google Scholar 

  25. Aboul-Enein HY, Ali I (2003) Macrocyclic glycopeptide antibiotics-based chiral stationary phases. In: Aboul-Enein HY, Wainer IW (eds) Chiral separations by liquid chromatography and related technologies. Marcel Dekker, Inc., New York, pp 137–175

    Chapter  Google Scholar 

  26. Hrobonova K, Lehotay J, Cizmarikova R, Armstrong DW (2001) Study of the mechanism of enantioseparation. I. Chiral analysis of alkylamino derivatives of aryloxypropanols by HPLC using macrocyclic antibiotics as chiral selectors. J Liquid Chromatogr Rel Technol 24:2225–2237

    Article  CAS  Google Scholar 

  27. Ghassempour A, Abdollahpour A, Tabar-Heydar K, Nabid MR, Mansouri S, Aboul-Enein HY (2005) Crystalline degradation products of vancomycin as a new chiral stationary phase for liquid chromatography. Chromatographia 61:151–155

    Article  CAS  Google Scholar 

  28. Armstrong DW, DeMond W (1984) Cyclodextrin bonded phases for the liquid chromatographic separation of optical, geometrical, and structural isomers. J Chromatogr Sci 22:411–415

    CAS  Google Scholar 

  29. Petrusevska K, Kuznetsov MA, Gedicke K, Meshko V, Staroverov SM, Sidel-Morgenstern A (2006) Chromatographic enantioseparation of amino acids using a new chiral stationary phase based on a macrocyclic glycopeptide antibiotic. J Sep Sci 29:1447–1457

    Article  PubMed  CAS  Google Scholar 

  30. Staroverov SM, Kuznetsov MA, Nesterenko PN, Vasiarov GG, Katrukha GS, Fedorova GB (2006) New chiral stationary phase with macrocyclic glycopeptide antibiotic eremomycin chemically bonded to silica. J Chromatogr A 1108:263–267

    Article  PubMed  CAS  Google Scholar 

  31. Ernst-Cabrera K, Wilchek M (1986) Silica containing primary hydroxyl groups for high performance affinity chromatography. Anal Biochem 159:267–272

    Article  PubMed  CAS  Google Scholar 

  32. Svensson LA, Karlsson KE, Karlsson A, Vessman J (1998) Immobilized vancomycin as chiral stationary phase in packed capillary liquid chromatography. Chirality 10:273–280

    Article  CAS  Google Scholar 

  33. Dönnecke J, Svensson LA, Gyllenhaal O, Karlsson KE, Karlsson A, Vessman J (1999) Evaluation of a vancomycin chiral stationary phase in packed capillary supercritical fluid chromatography. J Microcol Sep 11:521–533

    Article  Google Scholar 

  34. Svensson LA, Dönnecke J, Karlsson KE, Karlsson A, Vessman J (1999) Vancomycin based chiral stationary phases for micro column liquid chromatography. Chirality 11:121–128

    Article  CAS  Google Scholar 

  35. Wikström H, Svensson LA, Torstensson A, Owens PK (2000) Immobilisation and evaluation of a vancomycin chiral stationary phase for capillary electrochromatography. J Chromatogr A 869:395–409

    Article  PubMed  Google Scholar 

  36. Desiderio C, Aturki Z, Fanali S (2001) Use of vancomycin silica stationary phase in packed capillary electrochromatography I. Enantiomer separation of basic compounds. Electrophoresis 22:535–543

    Article  PubMed  CAS  Google Scholar 

  37. Svensson LA, Owens PK (2000) Enantioselective supercritical fluid chromatography using ristocetin A chiral stationary phases. Analyst 125:1037–1039

    Article  PubMed  CAS  Google Scholar 

  38. Fanali S, Catarcini P, Presutti C, Stancanelli R, Quaglia MG (2003) Use of short-end injection capillary packed with a glycopeptide antibiotic stationary phase in electrochromatography and capillary liquid chromatography for the enantiomeric separation of hydroxy acids. J Chromatogr A 990:143–151

    Article  PubMed  CAS  Google Scholar 

  39. Fanali S, Catarcini P, Presutti C (2003) Enantiomeric separation of acidic compounds of pharmaceutical interest by capillary electrochromatography employing glycopeptide antibiotic stationary phases. J Chromatogr A 994:227–232

    Article  PubMed  CAS  Google Scholar 

  40. D’Acquarica I (2000) New synthetic strategies for the preparation of novel chiral stationary phases for high-performance liquid chromatography containing natural pool selectors. J Pharm Biomed Anal 23:3–13

    Article  PubMed  Google Scholar 

  41. Berthod A, Yu T, Kullman JP, Armstrong DW, Gasparrini F, D’Acquarica I, Misiti D, Carotti A (2000) Evaluation of the macrocyclic glycopeptide A-40,926 as a high-performance liquid chromatographic chiral selector and comparison with teicoplanin chiral stationary phase. J Chromatogr A 897:113–129

    Article  PubMed  CAS  Google Scholar 

  42. Berthod A, Chen X, Kullman JP, Armstrong DW, Gasparrini F, D’Acquarica I, Villani C, Carotti A (2000) Role of the carbohydrate moieties in chiral recognition on teicoplanin-based LC stationary phases. Anal Chem 72:1767–1780

    Article  PubMed  CAS  Google Scholar 

  43. Diana J, Visky D, Roets E, Hoogmartens J (2003) Development and validation of an improved method for the analysis of vancomycin by liquid chromatography. Selectivity of reversed-phase columns towards vancomycin components. J Chromatogr A 996:115–131

    Article  PubMed  CAS  Google Scholar 

  44. Berthod A (2006) Chiral recognition mechanisms. Anal Chem 78:2093–2099

    Article  PubMed  Google Scholar 

  45. Berthod A (2009) Chiral recognition mechanisms with macrocyclic glycopeptide selectors. Chirality 21:167–175

    Article  PubMed  CAS  Google Scholar 

  46. Berthod A, Qiu HX, Staroverov SM, Kuznestov MA, Armstrong DW (2010) Chiral recognition with macrocyclic glycopeptides: mechanisms and applications. In: Berthod A (ed) Chiral recognition in separation methods: mechanisms and applications. Springer, Heidelberg, pp 203–222

    Chapter  Google Scholar 

  47. Lämmerhofer M (2010) Chiral recognition by enantioselective liquid chromatography: mechanisms and modern chiral stationary phases. J Chromatogr A 1217:814–856

    Article  PubMed  Google Scholar 

  48. El Deeb S (2010) Evaluation of a vancomycin-based LC column in enantiomeric separation of atenolol: method development, repeatability study and enantiomeric impurity determination. Chromatographia 71:783–787

    Article  CAS  Google Scholar 

  49. Yang J, Lu XM, Bi YJ, Qin F, Li FM (2007) Chiral separation of duloxetine and its R-enantiomer by LC. Chromatographia 66:389–393

    Article  CAS  Google Scholar 

  50. Xu Z, Zhou N, Xu X, Xu XX (2007) Enantioseparation of rivastigmine by high performance liquid chromatography using vancomycin chiral stationary phase. Chinese J Anal Chem 35:1043–1046

    CAS  Google Scholar 

  51. Zuo Z, Wo SK, Lo CMY, Zhou L, Cheng G, You JHS (2010) Simultaneous measurement of S-warfarin, R-warfarin, S-7-hydroxywarfarin and R-7-hydroxywarfarin in human plasma by liquid chromatography–tandem mass spectrometry. J Pharm Biomed Anal 52:305–310

    Article  PubMed  CAS  Google Scholar 

  52. Malakova J, Pavek P, Svecova L, Jokesova I, Zivny P, Palicka V (2009) New high-performance liquid chromatography method for the determination of (R)-warfarin and (S)-warfarin using chiral separation on a glycopeptide-based stationary phase. J Chromatogr B 877:3226–3230

    Article  CAS  Google Scholar 

  53. Yardley JP, Husbands GE, Stack G, Butch J, Bicksler J, Moyer JA, Muth EA, Andree TH, Fletcher H, James MNG, Sielecki AR (1990) 2-Phenyl-2-(1-hydroxycycloalkyl)ethylamine derivatives: synthesis and antidepressant activity. J Med Chem 33:2899–2905

    Article  PubMed  CAS  Google Scholar 

  54. Liu W, Wang F, Li H (2007) Simultaneous stereoselective analysis of venlafaxine and O-desmethylvenlafaxine enantiomers in human plasma by HPLC-ESI/MS using a vancomycin chiral column. J Chromatogr B 850:183–189

    Article  CAS  Google Scholar 

  55. Zhao J, Golozoubova V, Cannon B, Nedergaard J (2001) Arotinolol is a weak partial agonist on beta 3-adrenergic receptors in brown adipocytes. Can J Physiol Pharmacol 79:585–593

    PubMed  CAS  Google Scholar 

  56. Hefnawy MM, Al-Shehri MM (2010) Chiral stability-indicating HPLC method for analysis of arotinolol in pharmaceutical formulation and human plasma. Arabian J Chem 3:147–153

    Article  Google Scholar 

  57. Hefnawy MM, Sultan MA, Al-Shehri MM (2007) HPLC separation technique for analysis of bufuralol enantiomers in plasma and pharmaceutical formulations using a vancomycin chiral stationary phase and UV detection. J Chromatogr B 856:328–336

    Article  CAS  Google Scholar 

  58. Hashem H, Tründelberg C, Attef O, Jira T (2011) Effect of chromatographic conditions on liquid chromatographic chiral separation of terbutaline and salbutamol on chirobiotic V column. J Chromatogr A 1218:6727–6731

    Article  PubMed  CAS  Google Scholar 

  59. Mojtahedi MM, Chaiavi S, Ghassempour A, Tabar-Heydar K, Sharif SJG, Malekzadeh M, Aboul-Enein HY (2007) Chiral separation of three agrochemical toxins enantiomers by high-performance liquid chromatography on a vancomycin crystalline degradation products-chiral stationary phase. Biomed Chromatogr 21:234–240

    Article  PubMed  CAS  Google Scholar 

  60. Boesten JMM, Berkheij M, Schoemaker HE, Hiemstra H, Duchateau ALL (2006) Enantioselective high-performance liquid chromatographic separation of N-methyloxycarbonyl unsaturated amino acids on macrocyclic glycopeptide stationary phases. J Chromatogr A 1108:26–30

    Article  PubMed  CAS  Google Scholar 

  61. Xiao TL, Tesarova E, Anderson JL, Egger M, Armstrong DW (2006) Evaluation and comparison of a methylated teicoplanin aglycone to teicoplanin aglycone and natural teicoplanin chiral stationary phases. J Sep Sci 29:429–445

    Article  PubMed  CAS  Google Scholar 

  62. Honetschlagerova VM, Srkalova S, Bosakova Z, Coufal P, Tesarova E (2009) Comparison of enantioselective HPLC separation of structurally diverse compounds on chiral stationary phases with different teicoplanin coverage and distinct linkage chemistry. J Sep Sci 32:1704–1711

    Article  Google Scholar 

  63. Poplewska KR, Pitkowski W, Seidel-Morgenstern A, Antos D (2007) Influence of preferential adsorption of mobile phase on retention behavior of amino acids on the teicoplanin chiral selector. J Chromatogr A 1173:58–70

    Article  CAS  Google Scholar 

  64. Haroun M, Ravelet C, Grosset C, Ravel A, Villet A, Peyrin E (2006) Reversal of the enantiomeric elution order of some aromatic amino acids using reversed-phase chromatographic supports coated with the teicoplanin chiral selector. Talanta 68:1032–1036

    Article  PubMed  CAS  Google Scholar 

  65. Pataj Z, Ilisz I, Aranyi A, Forro E, Fulop F, Armstrong DW, Peter A (2010) LC separation of γ-amino acid enantiomers. Chromatographia 71:13–19

    Article  Google Scholar 

  66. Berkecz R, Ilisz I, Benedek G, Fulop F, Armstrong DW, Peter A (2009) High-performance liquid chromatographic enantioseparation of 2-aminomono- and dihydroxycyclopentanecarboxylic and 2-aminodihydroxycyclohexanecarboxylic acids on macrocyclic glycopeptide-based phases. J Chromatogr A 1216:927–932

    Article  PubMed  CAS  Google Scholar 

  67. Sipos L, Ilisz I, Pataj Z, Szakonyi Z, Fulop F, Armstrong DW, Peter A (2010) High-performance liquid chromatographic enantioseparation of monoterpene-based 2-amino carboxylic acids on macrocyclic glycopeptide-based phases. J Chromatogr A 1217:6956–6963

    Article  PubMed  CAS  Google Scholar 

  68. Bechtold M, Felinger A, Held M, Panke S (2007) Adsorption behavior of a teicoplanin aglycone bonded stationary phase under harsh overload conditions. J Chromatogr A 1154:277–286

    Article  PubMed  CAS  Google Scholar 

  69. Crofford LJ, Rowbotham MC, Mease PJ, Russell IJ, Dworkin RH, Corbin AE, Young JP, LaMoreaux LK, Martin SA, Sharma U (2005) Pregabalin for the treatment of fibromyalgia syndrome: results of a randomized, double-blind, placebo-controlled trial. Arthritis Rheum 52:1264–1273

    Article  PubMed  CAS  Google Scholar 

  70. Zhang YZ, Holliman C, Tang D, Fast D, Michael S (2008) Development and validation of a direct enantiomeric separation of pregabalin to support isolated perfused rat kidney studies. J Chromatogr B 875:148–153

    Article  CAS  Google Scholar 

  71. Al-Majed AA (2009) A direct HPLC method for the resolution and quantitation of the R-(−)- and S-(+)-enantiomers of vigabatrin (γ-vinyl-GABA) in pharmaceutical dosage forms using teicoplanin aglycone chiral stationary phase. J Pharm Biomed Anal 50:96–99

    Article  PubMed  CAS  Google Scholar 

  72. Svanfelt J, Eriksson J, Kronberg L (2010) Analysis of thyroid hormones in raw and treated waste water. J Chromatogr A 1217:6469–6474

    Article  PubMed  CAS  Google Scholar 

  73. Koidl J, Hodl H, Schmid MG, Neubauer B, Konrad M, Petschauer S, Gubitz G (2008) Enantiorecognition of triiodothyronine and thyroxine enantiomers using different chiral selectors by HPLC and micro-HPLC. J Biochem Biophysical Methods 70:1254–1260

    Article  CAS  Google Scholar 

  74. Bühring KU, Sailer H, Faro HP, Leopold G, Pabst J, Garbe A (1986) Pharmacokinetics and metabolism of bisoprolol-14C in three animal species and in humans. J Cardiovasc Pharmacol 11:21–28

    Google Scholar 

  75. Hefnawy MM, Sultan MAA, Al-Shehri MM (2007) Enantioanalysis of bisoprolol in human plasma with a macrocyclic antibiotic HPLC chiral column using fluorescence detection and solid phase extraction. Chem Pharm Bull 55:227–230

    Article  PubMed  CAS  Google Scholar 

  76. Rojkovicova T, Lehotay J, Armstrong DW, Cizmarik J (2006) Study of the mechanism of enantioseparation. Part XII. comparison study of thermodynamic parameters on separation of phenylcarbamic acid derivatives by HPLC using macrocyclic glycopeptide chiral stationary phases. J Liq Chromatogr Rel Technol 29:2615–2624

    Article  CAS  Google Scholar 

  77. Hrobonova K, Lehotay J, Cizmarikova R (2005) HPLC separation of enantiomers of some potential beta-blockers of the aryloxyaminopropanol type using macrocyclic antibiotic chiral stationary phases—studies of the mechanism of enantioseparation, part XI. Pharmazie 60:888–891

    PubMed  CAS  Google Scholar 

  78. Luo W, Zhu L, Deng J, Liu A, Guo B, Tan W, Dai R (2010) Simultaneous analysis of bambuterol and its active metabolite terbutaline enantiomers in rat plasma by chiral liquid chromatography–tandem mass spectrometry. J Pharm Biomed Anal 52:227–231

    Article  PubMed  CAS  Google Scholar 

  79. Aparasu RR, Jano E, Johnson ML, Chen H (2008) Hospitalization risk associated with typical and atypical antipsychotic use in community-dwelling elderly patients. Am J Geriatr Pharmacother 6:198–204

    Article  PubMed  Google Scholar 

  80. Jiang H, Li Y, Pelzer M, Cannon JM, Randlett C, Junga H, Jiang X, Ji QC (2008) Determination of molindone enantiomers in human plasma by high-performance liquid chromatography–tandem mass spectrometry using macrocyclic antibiotic chiral stationary phases. J Chromatogr A 1192:230–238

    Article  PubMed  CAS  Google Scholar 

  81. Wolf JE, Shander D, Huber F, Jackson J, Lin CS, Mathes BM, Schrode K (2007) Randomized, double-blind clinical evaluation of the efficacy and safety of topical eflornithine HCl 13.9 % cream in the treatment of women with facial hair. Int J Dermatol 46:94–98

    Article  PubMed  CAS  Google Scholar 

  82. Malma M, Bergqvista Y (2007) Determination of eflornithine enantiomers in plasma, by solid-phase extraction and liquid chromatography with evaporative light-scattering detection. J Chromatogr B 846:98–104

    Article  Google Scholar 

  83. Mericko D, Lehotay J, Skacani I (2006) Effect of temperature on retention and enantiomeric separation of chiral sulfoxides using teicoplanin aglycone chiral stationary phase. J Liq Chromatogr Rel Technol 29:623–638

    Article  CAS  Google Scholar 

  84. Mericko D, Lehotay J, Skacani I (2007) Separation and thermodynamic studies of chiral sulfoxides on teicoplanin-based stationary phase. J Liq Chromatogr Rel Technol 30:1401–1420

    Article  CAS  Google Scholar 

  85. Mericko D, Lehotay J, Cizmarik J (2008) Enantioseparation of chiral sulfoxides using teicoplanine chiral stationary phases and kinetic study of decomposition in human plasma. Pharmazie 63:854–859

    PubMed  CAS  Google Scholar 

  86. Villani C, Laleu B, Mobian P, Lacour J (2007) Effective HPLC resolution of [4] heterohelicenium dyes on chiral stationary phases using reversed-phase eluents. Chirality 19:601–606

    Article  PubMed  CAS  Google Scholar 

  87. Sun P, Krishnan A, Yadav A, MacDonnell FM, Armstrong DW (2008) Enantioseparations next term of chiral ruthenium(II) polypyridyl complexes using HPLC with macrocyclic glycopeptide chiral stationary phases (CSPs). J Mol Struct 890:75–80

    Article  CAS  Google Scholar 

  88. Zhang XT, Bao Y, Huang K, Barnett-Rundlett KL, Armstrong DW (2010) Evaluation of dalbavancin as chiral selector for HPLC and comparison with teicoplanin-based chiral stationary phases. Chirality 22:495–513

    Article  PubMed  CAS  Google Scholar 

  89. Zhang L, Gedicke K, Kuznetsov MA, Staroverov SM, Seidel-Morgenstern A (2007) Application of an eremomycin-chiral stationary phase for the separation of dl-methionine using simulated moving bed technology. J Chromatogr A 1162:90–96

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antal Péter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ilisz, I., Aranyi, A., Pataj, Z., Péter, A. (2013). Enantioseparations by High-Performance Liquid Chromatography Using Macrocyclic Glycopeptide-Based Chiral Stationary Phases: An Overview. In: Scriba, G. (eds) Chiral Separations. Methods in Molecular Biology, vol 970. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-263-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-263-6_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-262-9

  • Online ISBN: 978-1-62703-263-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics