Skip to main content

Synthetic mRNAs with Superior Translation and Stability Properties

  • Protocol
  • First Online:
Book cover Synthetic Messenger RNA and Cell Metabolism Modulation

Abstract

The translational efficiency and stability of synthetic mRNA in both cultured cells and whole animals can be improved by incorporation of modified cap structures at the 5′-end. mRNAs are synthesized in vitro by a phage RNA polymerase transcribing a plasmid containing the mRNA sequence in the presence of all four NTPs plus a cap dinucleotide. Modifications in the cap dinucleotide at the 2′- or 3′-positions of m7Guo, or modifications in the polyphosphate chain, can improve both translational efficiency and stability of the mRNA, thereby increasing the amount and duration of protein expression. In the context of RNA-based immunotherapy, the latter is especially important for antigen production and presentation by dendritic cells. Protocols are presented for synthesis of modified mRNAs, their introduction into cells and whole animals, and measurement of their translational efficiency and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Contreras R, Cheroutre H, Degrave W, Fiers W (1982) Simple, efficient in vitro synthesis of capped RNA useful for direct expression of cloned eukaryotic genes. Nucleic Acids Res 10:6353–6362

    Article  PubMed  CAS  Google Scholar 

  2. Konarska MM, Padgett RA, Sharp PA (1984) Recognition of a cap structure in splicing in vitro of mRNA precursors. Cell 38:731–736

    Article  PubMed  CAS  Google Scholar 

  3. Yisraeli JK, Melton DA (1989) Synthesis of long, capped transcripts in vitro by SP6 and T7 RNA polymerases. Meth Enzymol 180:42–50

    Article  PubMed  CAS  Google Scholar 

  4. Martin SA, Moss B (1975) Modification of RNA by mRNA guanylyltransferase and mRNA (guanine-7-)methyltransferase from vaccinia virions. J Biol Chem 250:9330–9335

    PubMed  CAS  Google Scholar 

  5. Pasquinelli AE, Dahlberg JE, Lund E (1995) Reverse 5′ caps in RNAs made in vitro by phage RNA polymerases. RNA 1:957–967

    PubMed  CAS  Google Scholar 

  6. Marcotrigiano J, Gingras A-C, Sonenberg N, Burley SK (1997) Cocrystal structure of the messenger RNA 5′ cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell 89:951–961

    Article  PubMed  CAS  Google Scholar 

  7. Matsuo H, Li H, McGuire AM, Fletcher CM, Gingras A-C, Sonenberg N, Wagner G (1997) Structure of translation factor eIF4E bound to m7GDP and interaction with 4E-binding protein. Nat Struct Biol 4:717–724

    Article  PubMed  CAS  Google Scholar 

  8. Deshmukh MV, Jones BN, Quang-Dang DU, Flinders J, Floor SN, Kim C, Jemielity J, Kalek M, Darzynkiewicz E, Gross JD (2008) mRNA decapping is promoted by an RNA-binding channel in Dcp2. Mol Cell 29:324–336

    Article  PubMed  CAS  Google Scholar 

  9. Stepinski J, Waddell C, Stolarski R, Darzynkiewicz E, Rhoads RE (2001) Synthesis and properties of mRNAs containing the novel “anti-reverse” cap analogues 7-methyl(3′-O-methyl)GpppG and 7-methyl(3′-deoxy)GpppG. RNA 7:1486–1495

    PubMed  CAS  Google Scholar 

  10. Jemielity J, Fowler T, Zuberek J, Stepinski J, Lewdorowicz M, Niedzwiecka A, Stolarski R, Darzynkiewicz E, Rhoads RE (2003) Novel “anti-reverse” cap analogues with superior translational properties. RNA 9:1108–1122

    Article  PubMed  CAS  Google Scholar 

  11. Peng Z-H, Sharma V, Singleton SF, Gershon PD (2002) Synthesis and application of a chain-terminating dinucleotide mRNA cap analog. Org Lett 4:161–164

    Article  PubMed  CAS  Google Scholar 

  12. Kore AR, Shanmugasundaram M, Charles I, Cheng AM, Barta TJ (2007) Synthesis and application of 2′-fluoro-substituted cap analogs. Bioorg Med Chem Lett 17:5295–5299

    Article  PubMed  CAS  Google Scholar 

  13. Kore AR, Shanmugasundaram M, Vlassov AV (2008) Synthesis and application of a new 2′,3′-isopropylidene guanosine substituted cap analog. Bioorg Med Chem Lett 18:4828–4832

    Article  PubMed  CAS  Google Scholar 

  14. Kore AR, Shanmugasundaram M, Charles I, Vlassov AV, Barta TJ (2009) Locked nucleic acid (LNA)-modified dinucleotide mRNA cap analogue: synthesis, enzymatic incorporation, and utilization. J Am Chem Soc 131:6364–6365

    Article  PubMed  CAS  Google Scholar 

  15. Grudzien E, Kalek M, Jemielity J, Darzynkiewicz E, Rhoads RE (2006) Differential inhibition of mRNA degradation pathways by novel cap analogs. J Biol Chem 281:1857–1867

    Article  PubMed  CAS  Google Scholar 

  16. Coller J, Parker R (2004) Eukaryotic mRNA decapping. Annu Rev Biochem 73:861–890

    Article  PubMed  CAS  Google Scholar 

  17. Wang Z, Jiao X, Carr-Schmid A, Kiledjian M (2002) The hDcp2 protein is a mammalian mRNA decapping enzyme. Proc Natl Acad Sci USA 99:12663–12668

    Article  PubMed  CAS  Google Scholar 

  18. Lykke-Andersen J (2002) Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay. Mol Cell Biol 22:8114–8121

    Article  PubMed  CAS  Google Scholar 

  19. van Dijk E, Cougot N, Meyer S, Babajko S, Wahle E, Seraphin B (2002) Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J 21:6915–6924

    Article  PubMed  Google Scholar 

  20. Steiger M, Carr-Schmid A, Schwartz DC, Kiledjian M, Parker R (2003) Analysis of recombinant yeast decapping enzyme. RNA 9:231–238

    Article  PubMed  CAS  Google Scholar 

  21. Grudzien-Nogalska E, Jemielity J, Kowalska J, Darzynkiewicz E, Rhoads RE (2007) Phosphorothioate cap analogs stabilize mRNA and increase translational efficiency in mammalian cells. RNA 13:1745–1755

    Article  PubMed  CAS  Google Scholar 

  22. Kowalska J, Lewdorowicz M, Zuberek J, Grudzien-Nogalska E, Bojarska E, Stepinski J, Rhoads RE, Darzynkiewicz E, Davis RE, Jemielity J (2008) Synthesis and characterization of mRNA cap analogs containing phosphorothioate substitutions that bind tightly to eIF4E and are resistant to the decapping pyrophosphatase DcpS. RNA 14:1119–1131

    Article  PubMed  CAS  Google Scholar 

  23. Su W, Slepenkov S, Grudzien-Nogalska E, Kowalska J, Kulis M, Zuberek J, Lukaszewicz M, Darzynkiewicz E, Jemielity J, Rhoads RE (2011) Translation, stability, and resistance to decapping of mRNAs containing caps substituted in the triphosphate chain with BH3, Se, and NH. RNA 17:978–988

    Article  PubMed  CAS  Google Scholar 

  24. Kuhn AN, Diken M, Kreiter S, Selmi A, Kowalska J, Jemielity J, Darzynkiewicz E, Huber C, Tureci O, Sahin U (2010) Phosphorothioate cap analogs increase stability and translational efficiency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo. Gene Ther 17:961–971

    Article  PubMed  CAS  Google Scholar 

  25. Diken M, Kreiter S, Selmi A, Britten CM, Huber C, Tureci O, Sahin U (2011) Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation. Gene Ther 18:702–708

    Article  PubMed  CAS  Google Scholar 

  26. Kowalska J, Lewdorowicz M, Zuberek J, Bojarska E, Wojcik J, Cohen LS, Davis RE, Stepinski J, Stolarski R, Darzynkiewicz E, Jemielity J (2005) Synthesis and properties of mRNA cap analogs containing phosphorothioate moiety in 5′,5′-triphosphate chain. Nucleos Nucleot Nucl Acids 24:595–600

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grant GM20818 from the National Institutes of Health of the USA (to R.E.R), by the Combined Project Grant SFB 432 from the German Research Foundation (to U.S.), by GO-Bio funding from the German Federal Ministry of Education and Research (to U.S.), by grants NN204 089438 (to J.J.) and NN301 096339 (to E.D.) from the Polish Ministry of Science and Higher Education, and by grant 55005 604 from the Howard Hughes Medical Institute (to E.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Rhoads .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Grudzien-Nogalska, E. et al. (2013). Synthetic mRNAs with Superior Translation and Stability Properties. In: Rabinovich, P. (eds) Synthetic Messenger RNA and Cell Metabolism Modulation. Methods in Molecular Biology, vol 969. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-260-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-260-5_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-259-9

  • Online ISBN: 978-1-62703-260-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics