Skip to main content

Mannosylated and Histidylated LPR Technology for Vaccination with Tumor Antigen mRNA

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 969))

Abstract

mRNA-based vaccines are currently being developed for treating various diseases including cancers. For this purpose, synthetic or in vitro transcribed (IVT) mRNA encoding tumor antigen offers several advantages over plasmid DNA encoding tumor antigen including better delivery and security. In this chapter, we report the preparation of mannosylated mRNA nanoparticles termed mannosylated lipopolyplexes or Man-LPR loaded with mRNA encoding a melanoma antigen. This formulation enhances the transfection of dendritic cells (DCs) in vivo and the anti-B16F10 melanoma vaccination in mice. The mRNA is formulated with histidylated liposomes and a histidylated polymer. Those pH-sensitive vectors promote membrane destabilization in endosomes upon the protonation of their histidine groups, allowing nucleic acid delivery in the cytosol. To favor DCs targeting via the mannose receptor, a mannose lipid is incorporated in the liposomes. Here, we provide protocols for the preparation of mannosylated liposomes, the synthesis of mRNA, mice immunization based on systemic injection, measurement of the cellular immune response and determination of the number of transfected splenic DC.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hoerr I, Obst R, Rammensee HG et al (2000) In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur J Immunol 30:1–7

    Article  PubMed  CAS  Google Scholar 

  2. Hess PR, Boczkowski D, Nair SK et al (2006) Vaccination with mRNAs encoding tumor-associated antigens and granulocyte-macrophage colony-stimulating factor efficiently primes CTL responses, but is insufficient to overcome tolerance to a model tumor/self antigen. Cancer Immunol Immunother 55:672–683

    Article  PubMed  CAS  Google Scholar 

  3. Steitz J, Britten CM, Wolfel T et al (2006) Effective induction of anti-melanoma immunity following genetic vaccination with synthetic mRNA coding for the fusion protein EGFP.TRP2. Cancer Immunol Immunother 55:246–253

    Article  PubMed  CAS  Google Scholar 

  4. Weide B, Carralot JP, Reese A et al (2008) Results of the first phase I/II clinical vaccination trial with direct injection of mRNA. J Immunother 31:180–188

    Article  PubMed  CAS  Google Scholar 

  5. Weide B, Garbe C, Rammensee HG et al (2008) Plasmid DNA- and messenger RNA-based anti-cancer vaccination. Immunol Lett 115:33–42

    Article  PubMed  CAS  Google Scholar 

  6. Weide B, Pascolo S, Scheel B et al (2009) Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients. J Immunother 32:498–507

    Article  PubMed  CAS  Google Scholar 

  7. Rittig SM, Haentschel M, Weimer KJ et al (2011) Intradermal vaccinations with RNA coding for TAA generate CD8+ and CD4+ immune responses and induce clinical benefit in vaccinated patients. Mol Ther 19:990–999

    Article  PubMed  CAS  Google Scholar 

  8. Jackson RJ (1993) Cytoplasmic regulation of mRNA function: the importance of the 3′ untranslated region. Cell 74:9–14

    Article  PubMed  CAS  Google Scholar 

  9. Banerjee AK (1980) 5′-terminal cap structure in eucaryotic messenger ribonucleic acids. Microbiol Rev 44:175–205

    PubMed  CAS  Google Scholar 

  10. Sachs AB, Sarnow P, Hentze MW (1997) Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell 89:831–838

    Article  PubMed  CAS  Google Scholar 

  11. Gingras A, Raught B, Sonenberg N (1999) eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68:913–963

    Article  PubMed  CAS  Google Scholar 

  12. Gallie DR (1998) A tale of two termini: a functional interaction between the termini of an mRNA is a prerequisite for efficient translation initiation. Gene 216:1–11

    Article  PubMed  CAS  Google Scholar 

  13. Scheel B, Teufel R, Probst J et al (2005) Toll-like receptor-dependent activation of several human blood cell types by protamine-condensed mRNA. Eur J Immunol 35:1557–1566

    Article  PubMed  CAS  Google Scholar 

  14. Okumura K, Nakase M, Inui M et al (2008) Bax mRNA therapy using cationic liposomes for human malignant melanoma. J Gene Med 10:910–917

    Article  PubMed  CAS  Google Scholar 

  15. Mockey M, Bourseau E, Chandrashekhar V et al (2007) mRNA-based cancer vaccine: prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipopolyplexes. Cancer Gene Ther 14:802–814

    Article  PubMed  CAS  Google Scholar 

  16. Midoux P, Monsigny M (1999) Efficient gene transfer by histidylated polylysine/pDNA complexes. Bioconjug Chem 10:406–411

    Article  PubMed  CAS  Google Scholar 

  17. Midoux P, Pichon C, Yaouanc JJ et al (2009) Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br J Pharmacol 157:166–178

    Article  PubMed  CAS  Google Scholar 

  18. Pichon C, Goncalves C, Midoux P (2001) Histidine-rich peptides and polymers for nucleic acids delivery. Adv Drug Deliv Rev 53:75–94

    Article  PubMed  CAS  Google Scholar 

  19. Perche F, Benvegnu T, Berchel M et al (2011) Enhancement of dendritic cells transfection in vivo and of vaccination against B16F10 melanoma with mannosylated histidylated lipopolyplexes loaded with tumor antigen messenger RNA. Nanomedicine 7:445–453

    Article  PubMed  CAS  Google Scholar 

  20. Perche F, Gosset D, Mével M et al (2010) Selective gene delivery in dendritic cells with mannosylated and histidylated lipopolyplexes. J Drug Target 19(5):315–325

    Article  PubMed  Google Scholar 

  21. Mevel M, Breuzard G, Yaouanc JJ et al (2008) Synthesis and transfection activity of new cationic phosphoramidate lipids: high efficiency of an imidazolium derivative. Chembiochem 9:1462–1471

    Article  PubMed  CAS  Google Scholar 

  22. Mevel M, Neveu C, Goncalves C et al (2008) Novel neutral imidazole-lipophosphoramides for transfection assays. Chem Commun (Camb) 21:3124–3126

    Article  Google Scholar 

  23. Montier T, Delepine P, Benvegnu T et al (2004) Efficient gene transfer into human epithelial cell lines using glycosylated cationic carriers and neutral glycosylated co-lipids. Blood Cells Mol Dis 32:271–282

    Article  PubMed  CAS  Google Scholar 

  24. Heiser A, Dahm P, Yancey DR et al (2000) Human dendritic cells transfected with RNA encoding prostate-specific antigen stimulate prostate-specific CTL responses in vitro. J Immunol 164:5508–5514

    PubMed  CAS  Google Scholar 

  25. Tuyaerts S, Michiels A, Corthals J et al (2003) Induction of Influenza Matrix Protein 1 and MelanA-specific T lymphocytes in vitro using mRNA-electroporated dendritic cells. Cancer Gene Ther 10:696–706

    Article  PubMed  CAS  Google Scholar 

  26. Shen Z, Reznikoff G, Dranoff G et al (1997) Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules. J Immunol 158:2723–2730

    PubMed  CAS  Google Scholar 

  27. Monsigny M, Petit C, Roche AC (1988) Colorimetric determination of neutral sugars by a resorcinol sulfuric acid micromethod. Anal Biochem 175:525–530

    Article  PubMed  CAS  Google Scholar 

  28. Sluyterman LA (1960) The effect of oxygen upon the micro determination of histidine with the aid of the Pauly reaction. Biochim Biophys Acta 38:218–221

    Article  PubMed  CAS  Google Scholar 

  29. Stepinski J, Waddell C, Stolarski R et al (2001) Synthesis and properties of mRNAs containing the novel “anti-reverse” cap analogs 7-methyl(3′-O-methyl)GpppG and 7-methyl (3′-deoxy)GpppG. RNA 7:1486–1495

    PubMed  CAS  Google Scholar 

  30. Mockey M, Goncalves C, Dupuy FP et al (2006) mRNA transfection of dendritic cells: synergistic effect of ARCA mRNA capping with Poly(A) chains in cis and in trans for a high protein expression level. Biochem Biophys Res Commun 340:1062–1068

    Article  PubMed  CAS  Google Scholar 

  31. Grudzien-Nogalska E, Jemielity J, Kowalska J et al (2007) Phosphorothioate cap analogs stabilize mRNA and increase translational efficiency in mammalian cells. RNA 13:1745–1755

    Article  PubMed  CAS  Google Scholar 

  32. Kuhn AN, Diken M, Kreiter S et al (2010) Phosphorothioate cap analogs increase stability and translational efficiency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo. Gene Ther 17:961–971

    Article  PubMed  CAS  Google Scholar 

  33. Serre K, Giraudo L, Siret C et al (2006) CD4 T cell help is required for primary CD8 T cell responses to vesicular antigen delivered to dendritic cells in vivo. Eur J Immunol 36: 1386–1397

    Article  PubMed  CAS  Google Scholar 

  34. Fayolle C, Deriaud E, Leclerc C (1991) In vivo induction of cytotoxic T cell response by a free synthetic peptide requires CD4+ T cell help. J Immunol 147:4069–4073

    PubMed  CAS  Google Scholar 

  35. Bennett SR, Carbone FR, Karamalis F et al (1997) Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J Exp Med 186: 65–70

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to Ligue Nationale contre le Cancer, Ligue contre le Cancer (Région Centre), and Canceropole Grand Ouest for the funding of our research project. We gratefully acknowledge the members of our team, especially Cristine Gonçalves and our former PhD. and Master Students (Michael Mockey, Erika Bourseau and Federico Perche) which allowed the realization of these projects. We also thank Paul-Alain Jaffres, Mathieu Mével and Mathieu Berchel (from Brest), and Thierry Benvegnu and Marie-Laure Miramon (from Rennes).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Midoux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pichon, C., Midoux, P. (2013). Mannosylated and Histidylated LPR Technology for Vaccination with Tumor Antigen mRNA. In: Rabinovich, P. (eds) Synthetic Messenger RNA and Cell Metabolism Modulation. Methods in Molecular Biology, vol 969. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-260-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-260-5_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-259-9

  • Online ISBN: 978-1-62703-260-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics