Skip to main content

The MPTP/Probenecid Model of Progressive Parkinson’s Disease

  • Protocol
  • First Online:
Dopamine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 964))

Abstract

Parkinson’s disease (PD) is characterized by a progressive degeneration of dopamine (DA) neurons and a chronic loss of motor functions. The investigation of progressive degenerative mechanisms and possible neuroprotective approaches for PD depends upon the development of an experimental animal model that reproduces the neuropathology observed in humans. This chapter describes the generation of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTPp) chronic mouse model of PD. This model displays key features of PD, including impairment of motor and olfactory functions associated with partial loss of tyrosine hydroxylase-positive neurons and DA levels in the brain. The MPTPp mouse model provides an important tool for the study of mechanisms contributing to the pathological dysfunction of PD at the cellular and whole animal level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hawkes CH, Del Tredici K, Braak H (2007) Parkinson’s disease: a dual-hit hypothesis. Neuropathol Appl Neurobiol 33:599–614

    Article  PubMed  CAS  Google Scholar 

  2. Hornykiewicz O, Kish SJ (1987) Biochemical pathophysiology of Parkinson’s disease. Adv Neurol 45:19–34

    PubMed  CAS  Google Scholar 

  3. Hirsch EC (2000) Nigrostriatal system plasticity in Parkinson’s disease: effect of dopaminergic denervation and treatment. Ann Neurol 47:S115–S120

    PubMed  CAS  Google Scholar 

  4. Nisbet AP, Foster OJ, Kingsbury A, Eve DJ, Daniel SE, Marsden CD, Lees AJ (1995) Preproenkephalin and preprotachykinin messenger RNA expression in normal human basal ganglia and in Parkinson’s disease. Neuroscience 66:361–376

    Article  PubMed  CAS  Google Scholar 

  5. Goto S, Hirano A, Matsumoto S (1990) Met-enkephalin immunoreactivity in the basal ganglia in Parkinson’s disease and striatonigral degeneration. Neurology 40:1051–1056

    Article  PubMed  CAS  Google Scholar 

  6. Barcia C, Fernández Barreiro A, Poza M, Herrero MT (2003) Parkinson’s disease and inflammatory changes. Neurotox Res 5:411–418

    Article  PubMed  Google Scholar 

  7. Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397

    Article  PubMed  CAS  Google Scholar 

  8. Imamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y (2003) Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol 106:518–526

    Article  PubMed  CAS  Google Scholar 

  9. Olanow CW (2007) The pathogenesis of cell death in Parkinson’s disease (2007). Mov Disord 22(17):S335–S342

    Article  PubMed  Google Scholar 

  10. Zhou C, Huang Y, Przedborski S (2008) Oxidative stress in Parkinson’s disease: a mechanism of pathogenic and therapeutic significance. Ann N Y Acad Sci 1147:93–104

    Article  PubMed  CAS  Google Scholar 

  11. Wakabayashi K, Tanji K, Mori F, Takahashi H (2007) The Lewy body in Parkinson’s disease: molecules implicated in the formation and degradation of alpha-synuclein aggregates. Neuropathology 27:494–506

    Article  PubMed  Google Scholar 

  12. Meredith GE, Sonsalla PK, Chesselet MF (2008) Animal models of Parkinson’s disease progression. Acta Neuropathol 115:385–398

    Article  PubMed  Google Scholar 

  13. Olanow CW, Kieburtz K, Schapira AH (2008) Why have we failed to achieve neuroprotection in Parkinson’s disease? Ann Neurol 64(Suppl 2):S101–S110

    PubMed  CAS  Google Scholar 

  14. Manning-Bog AB, Langston JW (2007) Model fusion, the next phase in developing animal models for Parkinson’s disease. Neurotox Res 11:219–240

    Article  PubMed  CAS  Google Scholar 

  15. Blandini F, Armentero MT, Martignoni E (2008) The 6-hydroxydopamine model: news from the past. Parkinsonism Relat Disord 14(Suppl 2):S124–S129

    Article  PubMed  Google Scholar 

  16. Chesselet MF (2008) In vivo alpha-synuclein overexpression in rodents: a useful model of Parkinson’s disease? Exp Neurol 209:22–27

    Article  PubMed  CAS  Google Scholar 

  17. Jenner P (2008) Functional models of Parkinson’s disease: a valuable tool in the development of novel therapies. Ann Neurol 64(Suppl 2):S16–S29

    PubMed  CAS  Google Scholar 

  18. Schneider B, Zufferey R, Aebischer P (2008) Viral vectors, animal models and new therapies for Parkinson’s disease. Parkinsonism Relat Disord 14(Suppl 2):S169–S171

    Article  PubMed  Google Scholar 

  19. Bezard E, Dovero S, Bioulac B, Gross C (1997) Effects of different schedules of MPTP administration on dopaminergic neurodegeneration in mice. Exp Neurol 148:288–292

    Article  PubMed  CAS  Google Scholar 

  20. Fornai F, Schlüter OM, Lenzi P, Gesi M, Ruffoli R, Ferrucci M, Lazzeri G, Busceti CL, Pontarelli F, Battaglia G, Pellegrini A, Nicoletti F, Ruggieri S, Paparelli A, Südhof TC (2005) Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and alpha-synuclein. Proc Natl Acad Sci U S A 102:3413–3418

    Article  PubMed  CAS  Google Scholar 

  21. Smeyne RJ, Jackson-Lewis V (2005) The MPTP model of Parkinson’s disease. Brain Res Mol Brain Res 134:57–66

    Article  PubMed  CAS  Google Scholar 

  22. Yazdani U, German DC, Liang CL, Manzino L, Sonsalla PK, Zeevalk GD (2006) Rat model of Parkinson’s disease: chronic central delivery of 1-methyl-4-phenylpyridinium (MPP+). Exp Neurol 200:172–183

    Article  PubMed  CAS  Google Scholar 

  23. Schintu N, Frau L, Ibba M, Garau A, Carboni E, Carta AR (2009) Progressive dopaminergic degeneration in the chronic MPTPp mouse model of Parkinson’s disease. Neurotox Res 16:127–139

    Article  PubMed  CAS  Google Scholar 

  24. Schmidt N, Ferger B (2001) Neurochemical findings in the MPTP model of Parkinson’s disease. J Neural Transm 108:1263–1282

    Article  PubMed  CAS  Google Scholar 

  25. Heikkila RE, Hess A, Duvoisin RC (1984) Dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine in mice. Science 224(4656):1451–1453

    Article  PubMed  CAS  Google Scholar 

  26. Zuddas A, Fascetti F, Corsini GU, Piccardi MP (1994) In brown Norway rats, MPP  +  is accumulated in the nigrostriatal dopaminergic terminals but it is not neurotoxic: a model of natural resistance to MPTP toxicity. Exp Neurol 127:54–61

    Article  PubMed  CAS  Google Scholar 

  27. Ricaurte GA, Langston JW, Delanney LE, Irwin I, Peroutka SJ, Forno LS (1986) Fate of nigrostriatal neurons in young mature mice given 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: a neurochemical and morphological reassessment. Brain Res 376:117–124

    Article  PubMed  CAS  Google Scholar 

  28. Petroske E, Meredith GE, Callen S, Totterdell S, Lau YS (2001) Mouse model of Parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neuroscience 106:589–601

    Article  PubMed  CAS  Google Scholar 

  29. Meredith GE, Totterdell S, Petroske E, Santa Cruz K, Callison RC Jr, Lau YS (2002) Lysosomal malfunction accompanies alpha-synuclein aggregation in a progressive mouse model of Parkinson’s disease. Brain Res 956:156–165

    Article  PubMed  CAS  Google Scholar 

  30. Novikova L, Garris BL, Garris DR, Lau YS (2006) Early signs of neuronal apoptosis in the substantia nigra pars compacta of the progressive neurodegenerative mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid model of Parkinson’s disease. Neuroscience 140:67–76

    Article  PubMed  CAS  Google Scholar 

  31. Spiga S, Serra GP, Puddu MC, Foddai M, Diana M (2006) Morphine withdrawal-induced abnormalities in the VTA: confocal laser scanning microscopy. Eur J Neurosci 17:605–612

    Article  Google Scholar 

  32. Spiga S, Lintas A, Migliore M, Diana M (2010) Altered architecture and functional consequences of the mesolimbic dopamine system in cannabis dependence. Addict Biol 15:266–276

    Article  PubMed  CAS  Google Scholar 

  33. Drucker-Colín R, García-Hernández F (1991) A new motor test sensitive to aging and dopaminergic function. J Neurosci Methods 39:153–161

    Article  PubMed  Google Scholar 

  34. Carter RJ, Lione LA, Humby T, Mangiarini L, Mahal A, Bates GP, Dunnett SB, Morton AJ (1999) Characterization of progressive motor deficits in mice transgenic for the human Huntington’s disease mutation. J Neurosci 19:3248–3257

    PubMed  CAS  Google Scholar 

  35. Fleming SM, Salcedo J, Fernagut PO, Rockenstein E, Masliah E, Levine MS, Chesselet MF (2004) Early and progressive sensorimotor anomalies in mice overexpressing wild-type human alpha-synuclein. J Neurosci 24:9434–9440

    Article  PubMed  CAS  Google Scholar 

  36. Ogawa N, Hirose Y, Ohara S, Ono T, Watanabe Y (1985) A simple quantitative bradykinesia test in MPTP-treated mice. Res Commun Chem Pathol Pharmacol 50:435–441

    PubMed  CAS  Google Scholar 

  37. Matsuura K, Kabuto H, Makino H, Ogawa N (1997) Pole test is a useful method for evaluating the mouse movement disorder caused by striatal dopamine depletion. J Neurosci Methods 73:45–48

    Article  PubMed  CAS  Google Scholar 

  38. Sedelis M, Hofele K, Auburger GW, Morgan S, Huston JP, Schwarting RK (2000) MPTP susceptibility in the mouse: behavioral, neurochemical, and histological analysis of gender and strain differences. Behav Genet 30:171–182

    Article  PubMed  CAS  Google Scholar 

  39. Fernagut PO, Chalon S, Diguet E, Guilloteau D, Tison F, Jaber M (2003) Motor behaviour deficits and their histopathological and functional correlates in the nigrostriatal system of dopamine transporter knockout mice. Neuroscience 116:1123–1130

    Article  PubMed  CAS  Google Scholar 

  40. Paxinos G, Franklin KBJ (2001) The Mouse Brain in Stereotaxic Coordinates, 2nd edn. Academic, San Diego

    Google Scholar 

  41. Marsden CA, Joseph MH (1986) Biogenic amines. In: Kim CK (ed) HPLC of small molecules, a practical approach. IRL Press, Oxford

    Google Scholar 

  42. Carboni E (2003) Microdialysis coupled with electrochemical detection: a way to investigate brain monoamine role in freely moving animals. Methods Mol Med 79:415–432

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna R. Carta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Carta, A.R., Carboni, E., Spiga, S. (2013). The MPTP/Probenecid Model of Progressive Parkinson’s Disease. In: Kabbani, N. (eds) Dopamine. Methods in Molecular Biology, vol 964. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-251-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-251-3_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-250-6

  • Online ISBN: 978-1-62703-251-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics