Skip to main content

Assessment of Multidrug Efflux Assemblies by Surface Plasmon Resonance

  • Protocol
  • First Online:
Bacterial Cell Surfaces

Part of the book series: Methods in Molecular Biology ((MIMB,volume 966))

Abstract

Surface plasmon resonance (SPR) is a powerful tool for kinetic analyses of protein–protein interactions. Here we describe the application of this method to study interactions of membrane proteins involved in multidrug efflux in Escherichia coli.These so-called multidrug efflux pumps comprise an inner membrane transporter, a periplasmic membrane fusion protein and an outer membrane channel. The three components are assembled into a protein conduit that enables bacteria to expel multiple drugs directly into the external medium bypassing the periplasm. The “across-two-membranes” transport mechanism makes tripartite transporters poorly amenable to biochemical analyses. Two out of three components are located in different membranes and must be studied in detergents or reconstituted into lipid bilayers to retain their functionality. Furthermore, cytoplasmic and exoplasmic domains of all three components perform different functions and must be oriented in a specific way to assemble functional complexes. The SPR approach provides means to overcome some of these problems in studies of protein assemblies that function in the context of two membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nikaido H, Vaara M (1985) Molecular basis of bacterial outer membrane permeability. Microbiol Rev 49:1–32

    PubMed  CAS  Google Scholar 

  2. Lomovskaya O, Lewis K (1992) Emr, an Escherichia coli locus for multidrug resistance. Proc Natl Acad Sci U S A 89:8938–8942

    Article  PubMed  CAS  Google Scholar 

  3. Ma D, Cook DN, Alberti M, Pon NG, Nikaido H, Hearst JE (1993) Molecular cloning and characterization of acrA and acrE genes of Escherichia coli. J Bacteriol 175:6299–6313

    PubMed  CAS  Google Scholar 

  4. Lomovskaya O, Zgurskaya HI, Totrov M, Watkins WJ (2007) Waltzing transporters and ‘the dance macabre’ between humans and bacteria. Nat Rev Drug Discov 6:56–65

    Article  PubMed  CAS  Google Scholar 

  5. Nikaido H (2001) Preventing drug access to targets: cell surface permeability barriers and active efflux in bacteria. Semin Cell Dev Biol 12:215–223

    Article  PubMed  CAS  Google Scholar 

  6. Zgurskaya HI, Krishnamoorthy G, Tikhonova EB, Lau SY, Stratton KL (2003) Mechanism of antibiotic efflux in Gram-negative bacteria. Front Biosci 8:s862–s873

    Article  PubMed  CAS  Google Scholar 

  7. Dinh T, Paulsen IT, Saier MH Jr (1994) A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of gram-negative bacteria. J Bacteriol 176:3825–3831

    PubMed  CAS  Google Scholar 

  8. Aires JR, Nikaido H (2005) Aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coli. J Bacteriol 187:1923–1929

    Article  PubMed  CAS  Google Scholar 

  9. Tikhonova EB, Devroy VK, Lau SY, Zgurskaya HI (2007) Reconstitution of the Escherichia coli macrolide transporter: the periplasmic membrane fusion protein MacA stimulates the ATPase activity of MacB. Mol Microbiol 63:895–910

    Article  PubMed  CAS  Google Scholar 

  10. Zgurskaya HI, Nikaido H (1999) Bypassing the periplasm: reconstitution of the AcrAB multidrug efflux pump of Escherichia coli. Proc Natl Acad Sci U S A 96:7190–7195

    Article  PubMed  CAS  Google Scholar 

  11. Andersen C, Hughes C, Koronakis V (2001) Protein export and drug efflux through bacterial channel-tunnels. Curr Opin Cell Biol 13:412–416

    Article  PubMed  CAS  Google Scholar 

  12. Thanabalu T, Koronakis E, Hughes C, Koronakis V (1998) Substrate-induced assembly of a contiguous channel for protein export from E. coli: reversible bridging of an inner-membrane translocase to an outer membrane exit pore. EMBO J 17:6487–6496

    Article  PubMed  CAS  Google Scholar 

  13. Paulsen IT, Chen J, Nelson KE, Saier MH Jr (2001) Comparative genomics of microbial drug efflux systems. J Mol Microbiol Biotechnol 3:145–150

    PubMed  CAS  Google Scholar 

  14. Saier MH Jr, Beatty JT, Goffeau A, Harley KT, Heijne WH, Huang SC, Jack DL, Jahn PS, Lew K, Liu J, Pao SS, Paulsen IT, Tseng TT, Virk PS (1999) The major facilitator superfamily. J Mol Microbiol Biotechnol 1:257–279

    PubMed  CAS  Google Scholar 

  15. Tseng TT, Gratwick KS, Kollman J, Park D, Nies DH, Goffeau A, Saier MH Jr (1999) The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol 1:107–125

    PubMed  CAS  Google Scholar 

  16. Saier MH Jr, Paulsen IT, Sliwinski MK, Pao SS, Skurray RA, Nikaido H (1998) Evolutionary origins of multidrug and drug-specific efflux pumps in bacteria. FASEB J 12:265–274

    PubMed  CAS  Google Scholar 

  17. Modali SD, Zgurskaya HI (2011) The periplasmic membrane proximal domain of MacA acts as a switch in stimulation of ATP hydrolysis by MacB transporter. Mol Microbiol 81:937–951

    Article  PubMed  CAS  Google Scholar 

  18. Tikhonova EB, Dastidar V, Rybenkov VV, Zgurskaya HI (2009) Kinetic control of TolC recruitment by multidrug efflux complexes. Proc Natl Acad Sci U S A 106:16416–16421

    Article  PubMed  CAS  Google Scholar 

  19. Tikhonova EB, Yamada Y, Zgurskaya HI (2011) Sequential mechanism of assembly of multidrug efflux pump AcrAB-TolC. Chem Biol 18:454–463

    Article  PubMed  CAS  Google Scholar 

  20. Tikhonova EB, Zgurskaya HI (2004) AcrA, AcrB, and TolC of Escherichia coli form a stable intermembrane multidrug efflux complex. J Biol Chem 279:32116–32124

    Article  PubMed  CAS  Google Scholar 

  21. Hearty S, Conroy PJ, Ayyar BV, Byrne B, O’Kennedy R (2010) Surface plasmon resonance for vaccine design and efficacy studies: recent applications and future trends. Expert Rev Vaccines 9:645–664

    Article  PubMed  CAS  Google Scholar 

  22. Jason-Moller L, Murphy M, Bruno J (2001) Overview of biacore systems and their applications. Curr Protoc Protein Sci. 19: Unit 19.3

    Google Scholar 

  23. Maynard JA, Lindquist NC, Sutherland JN, Lesuffleur A, Warrington AE, Rodriguez M, Oh S-H (2009) Surface plasmon resonance for high-throughput ligand screening of ­membrane-bound proteins. Biotechnol J 4:1542–1558

    Article  PubMed  CAS  Google Scholar 

  24. Piliarik M, Vaisocherova H, Homola J (2009) Surface plasmon resonance biosensing. Methods Mol Biol 503:65–88

    Article  PubMed  CAS  Google Scholar 

  25. Schuck P, Zhao H (2010) The role of mass transport limitation and surface heterogeneity in the biophysical characterization of macromolecular binding processes by SPR biosensing. Methods Mol Biol 627:15–54

    Article  PubMed  CAS  Google Scholar 

  26. Myszka DG (1999) Improving biosensor analysis. J Mol Recognit 12:279–284

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen I. Zgurskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tikhonova, E.B., Zgurskaya, H.I. (2013). Assessment of Multidrug Efflux Assemblies by Surface Plasmon Resonance. In: Delcour, A. (eds) Bacterial Cell Surfaces. Methods in Molecular Biology, vol 966. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-245-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-245-2_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-244-5

  • Online ISBN: 978-1-62703-245-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics