Skip to main content

Experimental Manipulation of the Microbial Functional Amyloid Called Curli

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 966))

Abstract

Curli are proteinaceous fibrous structures produced on the surface of many gram-negative bacteria. As a major constituent of the extracellular matrix, curli mediate interactions between the bacteria and its environment, and as such, curli play a critical role in biofilm formation. Curli fibers share biophysical properties with a growing number of remarkably stable and ordered protein aggregates called amyloid. Here we describe experimental methods to study the biogenesis and assembly of curli by exploiting their amyloid properties. We also present methods to analyze curli-mediated biofilm formation. These approaches are straightforward and can easily be adapted to study other bacterially produced amyloids.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Zogaj X, Bokranz W, Nimtz M, Romling U (2003) Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun 71(7):4151–4158

    Article  PubMed  CAS  Google Scholar 

  2. Prigent-Combaret C, Prensier G, Le Thi TT, Vidal O, Lejeune P, Dorel C (2000) Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: role of flagella, curli and colanic acid. Environ Microbiol 2(4):450–464

    Article  PubMed  CAS  Google Scholar 

  3. Tükel CRM, Humphries AD, Wilson RP, Andrews-Polymenis HL, Gull T, Figueiredo JF, Wong MH, Michelsen KS, Akçelik M, Adams LG, Bäumler AJ (2005) CsgA is a pathogen-associated molecular pattern of Salmonella enterica serotype Typhimurium that is recognized by Toll-like receptor 2. Mol Microbiol 58(1):289–304

    Article  PubMed  Google Scholar 

  4. Tukel C, Wilson RP, Nishimori JH, Pezeshki M, Chromy BA, Baumler AJ (2009) Responses to amyloids of microbial and host origin are mediated through Toll-Like receptor 2. Cell Host Microbe 6(1):45–53

    Article  PubMed  CAS  Google Scholar 

  5. Gophna U, Barlev M, Seijffers R, Oelschlager TA, Hacker J, Ron EZ (2001) Curli fibers mediate internalization of Escherichia coli by eukaryotic cells. Infect Immun 69(4):2659–2665

    Article  PubMed  CAS  Google Scholar 

  6. Johansson C, Nilsson T, Olsen A, Wick MJ (2001) The influence of curli, a MHC-I-binding bacterial surface structure, on macrophage-T cell interactions. FEMS Immunol Med Microbiol 30(1):21–29

    PubMed  CAS  Google Scholar 

  7. Olsen A, Jonsson A, Normark S (1989) Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 338(6217):652–655

    Article  PubMed  CAS  Google Scholar 

  8. Kikuchi T, Mizunoe Y, Takade A, Naito S, Yoshida S (2005) Curli fibers are required for development of biofilm architecture in Escherichia coli K-12 and enhance bacterial adherence to human uroepithelial cells. Microbiol Immunol 49(9):875–884

    PubMed  CAS  Google Scholar 

  9. Uhlich GA, Cooke PH, Solomon EB (2006) Analyses of the red-dry-rough phenotype of an Escherichia coli O157: H7 strain and its role in biofilm formation and resistance to antibacterial agents. Appl Environ Microbiol 72(4):2564–2572

    Article  PubMed  CAS  Google Scholar 

  10. Austin JW, Sanders G, Kay WW, Collinson SK (1998) Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation. FEMS Microbiol Lett 162(2):295–301

    Article  PubMed  CAS  Google Scholar 

  11. Weiss-Muszkat M, Shakh D, Zhou Y, Pinto R, Belausov E, Chapman MR, Sela S (2010) Biofilm formation by and multicellular behavior of Escherichia coli O55:H7, an atypical enteropathogenic strain. Appl Environ Microbiol 76(5):1545–1554

    Article  PubMed  CAS  Google Scholar 

  12. Cegelski L, Pinkner JS, Hammer ND, Cusumano CK, Hung CS, Chorell E, Aberg V, Walker JN, Seed PC, Almqvist F, Chapman MR, Hultgren SJ (2009) Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat Chem Biol 5(12):913–919

    Article  PubMed  CAS  Google Scholar 

  13. Barnhart MM, Chapman MR (2006) Curli biogenesis and function. Annu Rev Microbiol 60:131–147

    Article  PubMed  CAS  Google Scholar 

  14. Hammar M, Arnqvist A, Bian Z, Olsen A, Normark S (1995) Expression of two csg operons is required for production of fibronectin- and Congo red-binding curli polymers in Escherichia coli K-12. Mol Microbiol 18(4):661–670

    Article  PubMed  CAS  Google Scholar 

  15. Gerstel U, Romling U (2003) The csgD promoter, a control unit for biofilm formation in Salmonella typhimurium. Res Microbiol 154(10):659–667

    Article  PubMed  CAS  Google Scholar 

  16. Collinson SK, Emody L, Muller KH, Trust TJ, Kay WW (1991) Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis. J Bacteriol 173(15):4773–4781

    PubMed  CAS  Google Scholar 

  17. Hammar MBZ, Normark S (1996) Nucleator-dependent intercellular assembly of adhesive curli organelles in Escherichia coli. Proc Natl Acad Sci U S A 93:6562–6566

    Article  PubMed  CAS  Google Scholar 

  18. Hammer ND, Schmidt JC, Chapman MR (2007) The curli nucleator protein, CsgB, contains an amyloidogenic domain that directs CsgA polymerization. Proc Natl Acad Sci U S A 104(30):12494–12499

    Article  PubMed  CAS  Google Scholar 

  19. Robinson LSAE, Hultgren SJ, Chapman MR (2006) Secretion of curli fibre subunits is mediated by the outer membrane-localized CsgG protein. Mol Microbiol 59(3):870–881

    Article  PubMed  CAS  Google Scholar 

  20. Nenninger AA, Robinson LS, Hammer ND, Epstein EA, Badtke MP, Hultgren SJ, Chapman MR (2011) CsgE is a curli secretion specificity factor that prevents amyloid fibre aggregation. Mol Microbiol 81(2):486–499

    Article  PubMed  CAS  Google Scholar 

  21. Nenninger AA, Robinson LS, Hultgren SJ (2009) Localized and efficient curli nucleation requires the chaperone-like amyloid assembly protein CsgF. Proc Natl Acad Sci U S A 106(3):900–905

    Article  PubMed  CAS  Google Scholar 

  22. Taylor JD, Zhou YZ, Salgado PS, Patwardhan A, McGuffie M, Pape T, Grabe G, Ashman E, Constable SC, Simpson PJ, Lee WC, Cota E, Chapman MR, Matthews SJ (2011) Atomic resolution insights into curli fiber biogenesis. Structure 19(9):1307–1316

    Article  PubMed  CAS  Google Scholar 

  23. Sunde M, Blake C (1997) The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Adv Protein Chem 50:123–159

    Article  PubMed  CAS  Google Scholar 

  24. Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CCF (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273(3):729–739

    Article  PubMed  CAS  Google Scholar 

  25. Nordstedt C, Naslund J, Tjernberg LO, Karlstrom AR, Thyberg J, Terenius L (1994) The alzheimer a-beta-peptide develops protease resistance in association with its polymerization into fibrils. J Biol Chem 269(49):30773–30776

    PubMed  CAS  Google Scholar 

  26. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120(3):885–890

    Article  PubMed  CAS  Google Scholar 

  27. Prusiner SB (1996) Molecular biology and pathogenesis of prion diseases. Trends Biochem Sci 21(12):482–487

    Article  PubMed  CAS  Google Scholar 

  28. Blanco LP, Evans ML, Smith DR, Badtke MP, Chapman MR (2012) Diversity, biogenesis and function of microbial amyloids. Trends Microbiol 20:66–73

    Article  PubMed  CAS  Google Scholar 

  29. Wang X, Chapman MR (2008) Curli provide the template for understanding controlled amyloid propagation. Prion 2(2):57–60

    Article  PubMed  Google Scholar 

  30. Badtke MP, Hammer ND, Chapman MR (2009) Functional amyloids signal their arrival. Sci Signal 2(80):pe43

    Article  PubMed  Google Scholar 

  31. Fowler DM, Koulov AV, Balch WE, Kelly JW (2007) Functional amyloid—from bacteria to humans. Trends Biochem Sci 32(5):217–224

    Article  PubMed  CAS  Google Scholar 

  32. Elliot MA, Karoonuthaisiri N, Huang J, Bibb MJ, Cohen SN, Kao CM, Buttner MJ (2003) The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor. Genes Dev 17(14):1727–1740

    Article  PubMed  CAS  Google Scholar 

  33. Dueholm MS, Petersen SV, Sønderkær M, Larsen P, Christiansen G, Hein KL, Enghild JJ, Nielsen JL, Nielsen KL, Nielsen PH, Otzen DE. Functional amyloid in Pseudomonas. Mol Microbiol. 2010 Jun 21. [Epub ahead of print]. PMID: 20572935

    Google Scholar 

  34. Romero D, Aguilar C, Losick R, Kolter R (2010) Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Natl Acad Sci U S A 107(5):2230–2234

    Article  PubMed  CAS  Google Scholar 

  35. Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J, Hammar M, Normark S, Hultgren SJ (2002) Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295(5556):851–855

    Article  PubMed  CAS  Google Scholar 

  36. King CYTP, Gross H, Gebert R, Aebi M, Wüthrich K (1997) Prion-inducing domain 2–114 of yeast Sup35 protein transforms in vitro into amyloid-like filaments. Proc Natl Acad Sci U S A 94(13):6618–6622

    Article  PubMed  CAS  Google Scholar 

  37. Dos Reis SC-SB, Forge V, Lascu I, Bégueret J, Saupe SJ (2002) The HET-s prion protein of the filamentous fungus Podospora anserina aggregates in vitro into amyloid-like fibrils. J Biol Chem 227(8):5703–5706

    Article  Google Scholar 

  38. Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE, Kelly JW (2006) Functional amyloid formation within mammalian tissue. PLoS Biol 4(1):100–107

    Article  CAS  Google Scholar 

  39. Maji SKPM, Perrin MH, Sawaya MR, Jessberger S, Vadodaria K, Rissman RA, Singru PS, Nilsson KP, Simon R, Schubert D, Eisenberg D, Rivier J, Sawchenko P, Vale W, Riek R (2009) Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325(5938):328–332

    Article  PubMed  CAS  Google Scholar 

  40. Wang X, Smith DR, Jones JW, Chapman MR (2007) In vitro polymerization of a functional Escherichia coli amyloid protein. J Biol Chem 282(6):3713–3719

    Article  PubMed  CAS  Google Scholar 

  41. Wang X, Zhou Y, Ren JJ, Hammer ND, Chapman MR (2010) Gatekeeper residues in the major curlin subunit modulate bacterial amyloid fiber biogenesis. Proc Natl Acad Sci U S A 107(1):163–168

    Article  PubMed  CAS  Google Scholar 

  42. Wang X, Chapman MR (2008) Sequence determinants of bacterial amyloid formation. J Mol Biol 380(3):570–580

    Article  PubMed  CAS  Google Scholar 

  43. Hammer ND, McGuffie BA, Zhou Y, Badtke MP, Reinke AA, Brännström K, Gestwicki JE, Olofsson A, Almqvist F, Chapman MR. The C-Terminal Repeating Units of CsgB Direct Bacterial Functional Amyloid Nucleation. J Mol Biol. 2012 Sep 21;422(3):376-89. Epub 2012 Jun 7. PMID: 22684146

    Google Scholar 

  44. Merritt JH, Kadouri DE, O’Toole GA. Growing and analyzing static biofilms. Curr Protoc Microbiol. 2005 Jul;Chapter 1:Unit 1B.1. PMID: 18770545

    Google Scholar 

  45. Werner Bokranz XW, Tschäpe H, Römling U (2005) Expression of cellulose and curli fimbriae by Escherichia coli isolated from the gastrointestinal tract. J Med Microbiol 54:1171–1182

    Article  PubMed  Google Scholar 

  46. Collinson SK, Doig PC, Doran JL, Clouthier S, Trust TJ, Kay WW (1993) Thin, aggregative fimbriae mediate binding of Salmonella enteritidis to fibronectin. J Bacteriol 175(1):12–18

    PubMed  CAS  Google Scholar 

  47. Bian Z, Brauner A, Li Y, Normark S (2000) Expression of and cytokine activation by Escherichia coli curli fibers in human sepsis. J Infect Dis 181(2):602–612

    Article  PubMed  CAS  Google Scholar 

  48. Römling U (2005) Characterization of the rdar morphotype, a multicellular behaviour in Enterobacteriaceae. Cell Mol Life Sci 62(11):1234–1246

    Article  PubMed  Google Scholar 

  49. O’Nuallain B, Williams AD, Westermark P, Wetzel R (2004) Seeding specificity in amyloid growth induced by heterologous fibrils. J Biol Chem 279(17):17490–17499

    Article  PubMed  Google Scholar 

  50. Wright CF, Teichmann SA, Clarke J, Dobson CM (2005) The importance of sequence diversity in the aggregation and evolution of proteins. Nature 438(7069):878–881

    Article  PubMed  CAS  Google Scholar 

  51. Evans ML, Schmidt JC, Ilbert M, Doyle SM, Quan S, Bardwell JC, Jakob U, Wickner S, Chapman MR (2011) E. coli chaperones DnaK, Hsp33 and Spy inhibit bacterial functional amyloid assembly. Prion 5(4): 323–34

    Google Scholar 

Download references

Acknowledgments

We thank members of the Chapman laboratory for helpful discussions and review of this manuscript. This work was supported by the National Institutes of Health Grant AI073847.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew R. Chapman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zhou, Y., Smith, D.R., Hufnagel, D.A., Chapman, M.R. (2013). Experimental Manipulation of the Microbial Functional Amyloid Called Curli. In: Delcour, A. (eds) Bacterial Cell Surfaces. Methods in Molecular Biology, vol 966. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-245-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-245-2_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-244-5

  • Online ISBN: 978-1-62703-245-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics