Skip to main content

Bacterial Expression, Purification, and Crystallization of Tyrosine Phosphorylated STAT Proteins

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 967))

Abstract

Signal Transducer and Activator of Transcription (STAT) proteins are latent cytoplasmic transcription ­factors that become activated by phosphorylation at a C-terminal tyrosine residue. Upon activation STAT proteins translocate to the nucleus and bind to their specific target sites. Here, we describe the recombinant expression of tyrosine phosphorylated STAT proteins in bacteria. This method allows the production of large amounts of activated STAT proteins for structural and biochemical studies including the high-throughput screening of chemical libraries.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Levy DE, Darnell JE Jr (2002) Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3:651–662

    Article  PubMed  CAS  Google Scholar 

  2. Schindler C, Darnell JE Jr (1995) Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu Rev Biochem 64:621–651

    Article  PubMed  CAS  Google Scholar 

  3. Shuai K, Horvath CM, Huang LH, Qureshi SA, Cowburn D, Darnell JE Jr (1994) Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell 76:821–828

    Article  PubMed  CAS  Google Scholar 

  4. Liao J, Fu Y, Shuai K (2000) Distinct roles of the NH2- and COOH-terminal domains of the protein inhibitor of activated signal transducer and activator of transcription (STAT) 1 (PIAS1) in cytokine-induced PIAS1-Stat1 interaction. Proc Natl Acad Sci U S A 97:5267–5272

    Article  PubMed  CAS  Google Scholar 

  5. Zhang JJ, Vinkemeier U, Gu W, Chakravarti D, Horvath CM, Darnell JE Jr (1996) Two contact regions between Stat1 and CBP/p300 in interferon gamma signaling. Proc Natl Acad Sci U S A 93:15092–15096

    Article  PubMed  CAS  Google Scholar 

  6. Vinkemeier U, Moarefi I, Darnell JEJ, Kuriyan J (1998) Structure of the amino-terminal protein interaction domain of STAT-4. Science 279:1048–1052

    Article  PubMed  CAS  Google Scholar 

  7. Chen X, Bhandari R, Vinkemeier U, Van Den Akker F, Darnell JE Jr, Kuriyan J (2003) A reinterpretation of the dimerization interface of the N-terminal domains of STATs. Protein Sci 12:361–365

    Article  PubMed  CAS  Google Scholar 

  8. Becker S, Groner B, Muller CW (1998) Three-dimensional structure of the Stat3b homodimer bound to DNA. Nature 394:145–151

    Article  PubMed  CAS  Google Scholar 

  9. Chen X, Vinkemeier U, Zhao Y, Jeruzalmi D, Darnell JEJ, Kuriyan J (1998) Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell 93:827–839

    Article  PubMed  CAS  Google Scholar 

  10. Dumoutier L, de Meester C, Tavernier J, Renauld JC (2009) New activation modus of STAT3: a tyrosine-less region of the interleukin-22 receptor recruits STAT3 by interacting with its coiled-coil domain. J Biol Chem 284:26377–26384

    Article  PubMed  CAS  Google Scholar 

  11. Horvath CM, Stark GR, Kerr IM, Darnell JE Jr (1996) Interactions between STAT and non-STAT proteins in the interferon-stimulated gene factor 3 transcription complex. Mol Cell Biol 16:6957–6964

    PubMed  CAS  Google Scholar 

  12. Lufei C, Ma J, Huang G, Zhang T, Novotny-Diermayr V, Ong CT, Cao X (2003) GRIM-19, a death-regulatory gene product, suppresses Stat3 activity via functional interaction. EMBO J 22:1325–1335

    Article  PubMed  CAS  Google Scholar 

  13. Nakajima H, Brindle PK, Handa M, Ihle JN (2001) Functional interaction of STAT5 and nuclear receptor co-repressor SMRT: implications in negative regulation of STAT5-dependent transcription. EMBO J 20:6836–6844

    Article  PubMed  CAS  Google Scholar 

  14. Zhang X, Wrzeszczynska MH, Horvath CM, Darnell JE Jr (1999) Interacting regions in Stat3 and c-Jun that participate in cooperative transcriptional activation. Mol Cell Biol 19:7138–7146

    PubMed  CAS  Google Scholar 

  15. Zhu M, John S, Berg M, Leonard WJ (1999) Functional association of Nmi with Stat5 and Stat1 in IL-2- and IFNgamma-mediated signaling. Cell 96:121–130

    Article  PubMed  CAS  Google Scholar 

  16. Horvath CM, Wen Z, Darnell JE Jr (1995) A STAT protein domain that determines DNA sequence recognition suggests a novel DNA-binding domain. Genes Dev 9:984–994

    Article  PubMed  CAS  Google Scholar 

  17. Yang E, Wen Z, Haspel RL, Zhang JJ, Darnell JE Jr (1999) The linker domain of Stat1 is required for gamma interferon-driven transcription. Mol Cell Biol 19:5106–5112

    PubMed  CAS  Google Scholar 

  18. Fu XY (1992) A transcription factor with SH2 and SH3 domains is directly activated by an interferon alpha-induced cytoplasmic protein tyrosine kinase(s). Cell 70:323–335

    Article  PubMed  CAS  Google Scholar 

  19. Moriggl R, Gouilleux-Gruart V, Jahne R, Berchtold S, Gartmann C, Liu X, Hennighausen L, Sotiropoulos A, Groner B, Gouilleux F (1996) Deletion of the carboxyl-terminal transactivation domain of MGF-Stat5 results in sustained DNA binding and a dominant negative phenotype. Mol Cell Biol 16:5691–5700

    PubMed  CAS  Google Scholar 

  20. Qureshi SA, Leung S, Kerr IM, Stark GR, Darnell JE Jr (1996) Function of Stat2 protein in transcriptional activation by alpha interferon. Mol Cell Biol 16:288–293

    PubMed  CAS  Google Scholar 

  21. Razeto A, Ramakrishnan V, Litterst CM, Giller K, Griesinger C, Carlomagno T, Lakomek N, Heimburg T, Lodrini M, Pfitzner E, Becker S (2004) Structure of the NCoA-1/SRC-1 PAS-B domain bound to the LXXLL motif of the STAT6 transactivation domain. J Mol Biol 336:319–329

    Article  PubMed  CAS  Google Scholar 

  22. Wojciak JM, Martinez-Yamout MA, Dyson HJ, Wright PE (2009) Structural basis for recruitment of CBP/p300 coactivators by STAT1 and STAT2 transactivation domains. EMBO J 28:948–958

    Article  PubMed  CAS  Google Scholar 

  23. Wagner BJ, Hayes TE, Hoban CJ, Cochran BH (1990) The SIF binding element confers sis/PDGF inducibility onto the c-fos promoter. EMBO J 9:4477–4484

    PubMed  CAS  Google Scholar 

  24. Soler-Lopez M, Petosa C, Fukuzawa M, Ravelli R, Williams JG, Muller CW (2004) Structure of an activated dictyostelium STAT in its DNA-unbound form. Mol Cell 13:791–804

    Article  PubMed  CAS  Google Scholar 

  25. Mao X, Ren Z, Parker GN, Sondermann H, Pastorello MA, Wang W, McMurray JS, Demeler B, Darnell JE Jr, Chen X (2005) Structural bases of unphosphorylated STAT1 association and receptor binding. Mol Cell 17:761–771

    Article  PubMed  CAS  Google Scholar 

  26. Neculai D, Neculai AM, Verrier S, Straub K, Klumpp K, Pfitzner E, Becker S (2005) Structure of the unphosphorylated STAT5a dimer. J Biol Chem 280:40782–40787

    Article  PubMed  CAS  Google Scholar 

  27. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798–809

    Article  PubMed  CAS  Google Scholar 

  28. Berg T (2008) Inhibition of transcription factors with small organic molecules. Curr Opin Chem Biol 12:464–471

    Article  PubMed  CAS  Google Scholar 

  29. Becker S, Corthals GL, Aebersold R, Groner B, Muller CW (1998) Expression of a tyrosine phosphorylated, DNA binding Stat3beta dimer in bacteria. FEBS Lett 441:141–147

    Article  PubMed  CAS  Google Scholar 

  30. Schaefer TS, Sanders LK, Nathans D (1995) Cooperative transcriptional activity of Jun and Stat3 beta, a short form of Stat3. Proc Natl Acad Sci U S A 92:9097–9101

    Article  PubMed  CAS  Google Scholar 

  31. Caldenhoven E, van Dijk TB, Solari R, Armstrong J, Raaijmakers JA, Lammers JW, Koenderman L, de Groot RP (1996) STAT3beta, a splice variant of transcription factor STAT3, is a dominant negative regulator of transcription. J Biol Chem 271: 13221–13227

    PubMed  CAS  Google Scholar 

  32. Cantor CR, Schimmel PR (1980) Biophysical chemistry, part II, techniques for the study of biological structure and function. W.H. Freeman and Company, San Francisco, CA, pp 380–381

    Google Scholar 

  33. Ito T, Tanahashi H, Misumi Y, Sakaki Y (1989) Nuclear factors interacting with an interleukin-6 responsive element of rat alpha 2-macroglobulin gene. Nucleic Acids Res 17:9425–9435

    Article  PubMed  CAS  Google Scholar 

  34. Fujitani Y, Nakajima K, Kojima H, Nakae K, Takeda T, Hirano T (1994) Transcriptional activation of the IL-6 response element in the junB promoter is mediated by multiple Stat family proteins. Biochem Biophys Res Commun 202:1181–1187

    Article  PubMed  CAS  Google Scholar 

  35. Seidel HM, Milocco LH, Lamb P, Darnell JE Jr, Stein RB, Rosen J (1995) Spacing of palindromic half sites as a determinant of selective STAT (signal transducers and activators of transcription) DNA binding and transcriptional activity. Proc Natl Acad Sci U S A 92:3041–3045

    Article  PubMed  CAS  Google Scholar 

  36. Cramer P, Muller CW (1997) Engineering of diffraction-quality crystals of the NF-kappaB P52 homodimer:DNA complex. FEBS Lett 405:373–377

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank former lab members Stefan Becker, Montserrat Soler-Lopez, and Carlo Petosa for setting up the initial protocols for STAT3β and Dd-STATa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph W. Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Baudin, F., Müller, C.W. (2013). Bacterial Expression, Purification, and Crystallization of Tyrosine Phosphorylated STAT Proteins. In: Nicholson, S., Nicola, N. (eds) JAK-STAT Signalling. Methods in Molecular Biology, vol 967. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-242-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-242-1_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-241-4

  • Online ISBN: 978-1-62703-242-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics