Skip to main content

Production and Crystallization of Recombinant JAK Proteins

  • Protocol
  • First Online:
Book cover JAK-STAT Signalling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 967))

Abstract

JAK kinases are critical mediators in development, differentiation, and homeostasis and accordingly, have become well-validated targets for drug discovery efforts. In recent years, the integration of X-ray crystallography in kinase-focused drug discovery programs has provided a powerful rationale for chemical modification by allowing a unique glimpse of a bound inhibitor to its target. Such structural information has not only led to an improved understanding of the key drivers of potency and specificity of several JAK-specific compounds but has greatly facilitated and accelerated the design of compounds with improved pharmacokinetic properties.

JAK kinases are traditionally difficult candidates to express in significant quantities, generally requiring eukaryotic expression systems, protein engineering, mutations to yield soluble, homogeneous samples suitable for crystallization studies. Here we review the key methods utilized to express, purify, and crystallize the JAK kinases and provide a detail description of the methods that we have developed to express, purify, and crystallize recombinant JAK1 and JAK2 proteins in the presence of small molecule inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilks AF (2008) The JAK kinases: not just another kinase drug discovery target. Semin Cell Dev Biol 19:319–328

    Article  PubMed  CAS  Google Scholar 

  2. Harpur AG, Andres AC, Ziemiecki A et al (1992) JAK2, a third member of the JAK family of protein tyrosine kinases. Oncogene 7:1347–1353

    PubMed  CAS  Google Scholar 

  3. Chrencik JE, Patny A, Leung IK et al (2010) Structural and thermodynamic characterization of the TYK2 and JAK3 kinase domains in complex with CP-690550 and CMP-6. J Mol Biol 400:413–433

    Article  PubMed  CAS  Google Scholar 

  4. Tsui V, Gibbons P, Ultsch M et al (2011) A new regulatory switch in a JAK protein kinase. Proteins 79:393–401

    Article  PubMed  CAS  Google Scholar 

  5. Liu Y, Gray NS (2006) Rational design of inhibitors that bind to inactive kinase conformations. Nat Chem Biol 2:358–364

    Article  PubMed  CAS  Google Scholar 

  6. Haan C, Kroy DC, Wuller S et al (2009) An unusual insertion in Jak2 is crucial for kinase activity and differentially affects cytokine responses. J Immunol 182:2969–2977

    Article  PubMed  CAS  Google Scholar 

  7. Lucet IS, Fantino E, Styles M et al (2006) The structural basis of Janus kinase 2 inhibition by a potent and specific pan-Janus kinase inhibitor. Blood 107:176–183

    Article  PubMed  CAS  Google Scholar 

  8. Alicea-Velazquez NL, Boggon TJ (2011) The use of structural biology in Janus kinase targeted drug discovery. Curr Drug Targets 12:546–555

    Article  PubMed  CAS  Google Scholar 

  9. Ioannidis S, Lamb ML, Wang T et al (2011) Discovery of 5-Chloro-N(2)-[(1S)-1-(5-fluoropyrimidin-2-yl)ethyl]-N(4)-(5-methyl-1H-pyr azol-3-yl)pyrimidine-2,4-diamine (AZD1480) as a Novel Inhibitor of the Jak/Stat Pathway. J Med Chem 54:262–276

    Article  PubMed  CAS  Google Scholar 

  10. Korniski B, Wittwer AJ, Emmons TL et al (2010) Expression, purification, and characterization of TYK-2 kinase domain, a member of the Janus kinase family. Biochem Biophys Res Commun 396:543–548

    Article  PubMed  CAS  Google Scholar 

  11. Hall T, Emmons TL, Chrencik JE et al (2010) Expression, purification, characterization and crystallization of non- and phosphorylated states of JAK2 and JAK3 kinase domain. Protein Expr Purif 69:54–63

    Article  PubMed  CAS  Google Scholar 

  12. Boggon TJ, Li Y, Manley PW et al (2005) Crystal structure of the Jak3 kinase domain in complex with a staurosporine analog. Blood 106:996–1002

    Article  PubMed  CAS  Google Scholar 

  13. Williams NK, Bamert RS, Patel O et al (2009) Dissecting specificity in the Janus kinases: the structures of JAK-specific inhibitors complexed to the JAK1 and JAK2 protein tyrosine kinase domains. J Mol Biol 387:219–232

    Article  PubMed  CAS  Google Scholar 

  14. Wang T, Duffy JP, Wang J et al (2009) Janus kinase 2 inhibitors. Synthesis and characterization of a novel polycyclic azaindole. J Med Chem 52:7938–7941

    Article  PubMed  CAS  Google Scholar 

  15. Thompson JE, Cubbon RM, Cummings RT et al (2002) Photochemical preparation of a pyridone containing tetracycle: a Jak protein kinase inhibitor. Bioorg Med Chem Lett 12:1219–1223

    Article  PubMed  CAS  Google Scholar 

  16. Changelian PS, Flanagan ME, Ball DJ et al (2003) Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science 302:875–878

    Article  PubMed  CAS  Google Scholar 

  17. Chayen NE, Saridakis E (2008) Protein crystallization: from purified protein to diffraction-quality crystal. Nat Methods 5:147–153

    Article  PubMed  CAS  Google Scholar 

  18. McPherson A (1999) Crystallization of biological macromolecules. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  19. Wang T, Ioannidis S, Almeida L et al (2011) In vitro and in vivo evaluation of 6-aminopyrazolyl-pyridine-3-carbonitriles as JAK2 kinase inhibitors. Bioorg Med Chem Lett 21: 2958–2961

    Article  PubMed  CAS  Google Scholar 

  20. Wang T, Ledeboer MW, Duffy JP et al (2010) A novel chemotype of kinase inhibitors: discovery of 3,4-ring fused 7-azaindoles and deazapurines as potent JAK2 inhibitors. Bioorg Med Chem Lett 20:153–156

    Article  PubMed  CAS  Google Scholar 

  21. Bergfors T (2003) Seeds to crystals. J Struct Biol 142:66–76

    Article  PubMed  CAS  Google Scholar 

  22. King LA, Hitchman R, Possee RD (2007) Recombinant baculovirus isolation. Methods Mol Biol 388:77–94

    Article  PubMed  CAS  Google Scholar 

  23. Antonysamy S, Hirst G, Park F et al (2009) Fragment-based discovery of JAK-2 inhibitors. Bioorg Med Chem Lett 19:279–282

    Article  PubMed  CAS  Google Scholar 

  24. Baffert F, Regnier CH, De Pover A et al (2010) Potent and selective inhibition of polycythemia by the quinoxaline JAK2 inhibitor NVP-BSK805. Mol Cancer Ther 9:1945–1955

    Article  PubMed  CAS  Google Scholar 

  25. Pissot-Soldermann C, Gerspacher M, Furet P et al (2010) Discovery and SAR of potent, orally available 2,8-diaryl-quinoxalines as a new class of JAK2 inhibitors. Bioorg Med Chem Lett 20:2609–2613

    Article  PubMed  CAS  Google Scholar 

  26. Harikrishnan LS, Kamau MG, Wan H et al (2011) Pyrrolo[1,2-f]triazines as JAK2 inhibitors: achieving potency and selectivity for JAK2 over JAK3. Bioorg Med Chem Lett 21: 1425–1428

    Article  PubMed  CAS  Google Scholar 

  27. Thoma G, Nuninger F, Falchetto R et al (2011) Identification of a potent Janus Kinase 3 inhibitor with high selectivity within the Janus Kinase family. J Med Chem 54: 284–288

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Australian Research Council and the National Health and Medical Research Council Industry Fellowship (I.L.). We thank Dr Onisha Patel and Dr Neal Williams for conducting part of the experiments described in this chapter. We thank Prof Jamie Rossjohn and Prof Andrew Wilks for supporting the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle S. Lucet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lucet, I.S., Bamert, R. (2013). Production and Crystallization of Recombinant JAK Proteins. In: Nicholson, S., Nicola, N. (eds) JAK-STAT Signalling. Methods in Molecular Biology, vol 967. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-242-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-242-1_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-241-4

  • Online ISBN: 978-1-62703-242-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics