Skip to main content

Assessing Chronological Aging in Saccharomyces cerevisiae

  • Protocol
  • First Online:
Cell Senescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 965))

Abstract

Saccharomyces cerevisiae is one of the most studied model organisms for the identification of genes and mechanisms that affect aging. The chronological lifespan (CLS) assay, which monitors the survival of a non-dividing population, is one of the two methods to study aging in yeast. To eliminate potential artifacts and identify genes and signaling pathways that may also affect aging in higher eukaryotes, it is important to determine CLS by multiple methods. Here, we describe these methods as well as the assays to study macromolecular damage during aging in yeast, with a focus on genomic instability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wei M, Fabrizio P, Hu J, Ge H, Cheng C, Li L, Longo VD (2008) Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet 4:e13

    Article  PubMed  Google Scholar 

  2. Madia F, Gattazzo C, Fabrizio P, Longo VD (2007) A simple model system for age-dependent DNA damage and cancer. Mech Ageing Dev 128:45–49

    Article  PubMed  CAS  Google Scholar 

  3. Wei M, Fabrizio P, Madia F, Hu J, Ge H, Li LM, Longo VD (2009) Tor1/Sch9-regulated carbon source substitution is as effective as calorie restriction in life span extension. PLoS Genet 5:e1000467

    Article  PubMed  Google Scholar 

  4. Madia F, Wei M, Yuan V, Hu J, Gattazzo C, Pham P, Goodman MF, Longo VD (2009) Oncogene homologue Sch9 promotes age-dependent mutations by a superoxide and Rev1/Polzeta-dependent mechanism. J Cell Biol 186:509–523

    Article  PubMed  CAS  Google Scholar 

  5. Capizzi RL, Jameson JW (1973) A table for the estimation of the spontaneous mutation rate of cells in culture. Mutat Res 17:147–148

    Article  PubMed  CAS  Google Scholar 

  6. Heidenreich E, Novotny R, Kneidinger B, Holzmann V, Wintersberger U (2003) Non-homologous end joining as an important mutagenic process in cell cycle-arrested cells. EMBO J 22:2274–2283

    Article  PubMed  CAS  Google Scholar 

  7. Heidenreich E, Wintersberger U (1998) Replication-dependent and selection-induced mutations in respiration-competent and respiration-deficient strains of Saccharomyces cerevisiae. Mol Gen Genet 260:395–400

    Article  PubMed  CAS  Google Scholar 

  8. Chen C, Kolodner RD (1999) Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat Genet 23:81–85

    Article  PubMed  CAS  Google Scholar 

  9. Datta A, Adjiri A, New L, Crouse GF, Jinks Robertson S (1996) Mitotic crossovers between diverged sequences are regulated by mismatch repair proteins in Saccaromyces cerevisiae. Mol Cell Biol 16:1085–1093

    PubMed  CAS  Google Scholar 

  10. Chain EB, Gualandi G (1954) Aeration studies. II. Rend Ist Sup Sanit 17:1109–1163

    PubMed  CAS  Google Scholar 

  11. Schultz JS (1964) Cotton closure as an aeration barrier in shaken flask fermentations. Appl Microbiol 12:305–310

    PubMed  CAS  Google Scholar 

  12. McDaniel LE, Bailey EG (1969) Effect of shaking speed and type of closure on shake flask cultures. Appl Microbiol 17:286–290

    PubMed  CAS  Google Scholar 

  13. Burtner CR, Murakami CJ, Kennedy BK, Kaeberlein M (2009) A molecular mechanism of chronological aging in yeast. Cell Cycle 8:1256–1270

    Article  PubMed  CAS  Google Scholar 

  14. Fabrizio P, Battistella L, Vardavas R, Gattazzo C, Liou LL, Diaspro A, Dossen JW, Gralla EB, Longo VD (2004) Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. J Cell Biol 166:1055–1067

    Article  PubMed  CAS  Google Scholar 

  15. Smith DL Jr, McClure JM, Matecic M, Smith JS (2007) Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins. Aging Cell 6:649–662

    Article  PubMed  CAS  Google Scholar 

  16. Fabrizio P, Pletcher SD, Minois N, Vaupel JW, Longo VD (2004) Chronological aging-independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae. FEBS Lett 557:136–142

    Article  PubMed  CAS  Google Scholar 

  17. Allen C, Buttner S, Aragon AD, Thomas JA, Meirelles O, Jaetao JE, Benn D, Ruby SW, Veenhuis M, Madeo F, Werner-Washburne M (2006) Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures. J Cell Biol 174:89–100

    Article  PubMed  CAS  Google Scholar 

  18. Guthrie C, Fink GR (1991) Guide to yeast genetics and molecular biology. Methods Enzymol 194:1–863

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valter D. Longo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Busincess Media, LLC

About this protocol

Cite this protocol

Hu, J., Wei, M., Mirisola, M.G., Longo, V.D. (2013). Assessing Chronological Aging in Saccharomyces cerevisiae . In: Galluzzi, L., Vitale, I., Kepp, O., Kroemer, G. (eds) Cell Senescence. Methods in Molecular Biology, vol 965. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-239-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-239-1_30

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-238-4

  • Online ISBN: 978-1-62703-239-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics