Skip to main content

Excitatory Responses to Microinjection of Glutamate Depend on Dose Not Volume: A Meta-Analysis of Studies in Rat RVLM

  • Protocol
  • First Online:
Stimulation and Inhibition of Neurons

Part of the book series: Neuromethods ((NM,volume 78))

Abstract

Microinjection of the excitatory amino acid glutamate is commonly used to stimulate neuronal cell bodies in brainstem nuclei that are crucial for cardiovascular regulation, respiratory control, and other functions. One such nucleus, the rostral ventrolateral medulla (RVLM), integrates afferent information to coordinate cardiovascular responses to changes in the environment. In the RVLM, an increase in mean blood pressure of ≥25 mmHg following glutamate microinjection is widely accepted as evidence of accurate localisation of this nucleus. However, the dose of glutamate, and injection volume, varies considerably between investigators, and the optimal parameters are controversial. Here we examined data from 34 publications over the past 20 years in which glutamate doses, ranging from 0.0051 to 8.5 μg, were injected to identify the rostral ventrolateral medulla (RVLM) in rat. The aim of this chapter is to describe, in a pragmatic way, the ideal parameters for this method. Our meta-analysis reveals that there is a dose–response relationship between glutamate and blood pressure at low doses, but once the dose is sufficient to elicit a ³35 mmHg rise in blood pressure, the response plateaus (∼0.5 μg). Interestingly, the injection volumes used in the studies examined do not show any correlation with the observed blood pressure responses. Neither strain nor weight of rat had any influence on the blood pressure response induced by glutamate. Glutamate microinjection is a stable and reproducible method for activating cell bodies, but not fibres of passage, in most brain regions, and may also be a useful tool for normalising other drug responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nicholson C (1985) Diffusion from an injected volume of a substance in brain tissue with arbitrary volume fraction and tortuosity. Brain Res 333:325–329

    Article  PubMed  CAS  Google Scholar 

  2. Sykova E, Nicholson C (2008) Diffusion in brain extracellular space. Physiol Rev 88:1277–1340

    Article  PubMed  CAS  Google Scholar 

  3. Goodchild AK, Dampney RA, Bandler R (1982) A method for evoking physiological responses by stimulation of cell bodies, but not axons of passage, within localized regions of the central nervous system. J Neurosci Methods 6:351–363

    Article  PubMed  CAS  Google Scholar 

  4. Lipski J, Bellingham MC, West MJ, Pilowsky P (1988) Limitations of the technique of pressure microinjection of excitatory amino acids for evoking responses from localized regions of the CNS. J Neurosci Methods 26:169–179

    Article  PubMed  CAS  Google Scholar 

  5. Bergamaschi C, Campos RR, Schor N, Lopes OU (1995) Role of the rostral ventrolateral medulla in maintenance of blood pressure in rats with Goldblatt hypertension. Hypertension 26:1117–1120

    Article  PubMed  CAS  Google Scholar 

  6. Adams JM, Madden CJ, Sved AF, Stocker SD (2007) Increased dietary salt enhances sympathoexcitatory and sympathoinhibitory responses from the rostral ventrolateral medulla. Hypertension 50:354–359

    Article  PubMed  CAS  Google Scholar 

  7. Adams JM, Bardgett ME, Stocker SD (2009) Ventral lamina terminalis mediates enhanced cardiovascular responses of rostral ventrolateral medulla neurons during increased dietary salt. Hypertension 54:308–314

    Article  PubMed  CAS  Google Scholar 

  8. Araujo GC, Lopes OU, Campos RR (1999) Importance of glycinergic and glutamatergic synapses within the rostral ventrolateral medulla for blood pressure regulation in conscious rats. Hypertension 34:752–755

    Article  PubMed  CAS  Google Scholar 

  9. Bergamaschi CT, Campos RR, Lopes OU (1999) Rostral ventrolateral medulla: a source of sympathetic activation in rats subjected to long-term treatment with L-NAME. Hypertension 34:744–747

    Article  PubMed  CAS  Google Scholar 

  10. Brooks VL, Freeman KL, Clow KA (2004) Excitatory amino acids in rostral ventrolateral medulla support blood pressure during water deprivation in rats. Am J Physiol (Heart C) 286:H1642–H1648

    Article  CAS  Google Scholar 

  11. De Paula PM, Machado BH (2001) Changes in regional vascular resistance in response to microinjection of L-glutamate into different antero-posterior coordinates of the RVLM in awake rats. Auton Neurosci (Basic) 87:301–309

    Article  Google Scholar 

  12. Ito S, Komatsu K, Tsukamoto K, Sved AF (2000) Excitatory amino acids in the rostral ventrolateral medulla support blood pressure in spontaneously hypertensive rats. Hypertension 35:413–417

    Article  PubMed  CAS  Google Scholar 

  13. Gordon FJ, McCann LA (1988) Pressor responses evoked by microinjections of L-glutamate into the caudal ventrolateral medulla of the rat. Brain Res 457:251–258

    Article  PubMed  CAS  Google Scholar 

  14. Kagiyama S, Tsuchihashi T, Phillips MI, Abe I, Matsumura K, Fujishima M (2001) Magnesium decreases arterial pressure and inhibits cardiovascular responses induced by N-methyl-D-aspartate and metabotropic glutamate receptors stimulation in rostral ventrolateral medulla. J Hypertens 19:2213–2219

    Article  PubMed  CAS  Google Scholar 

  15. Kasamatsu K, Sapru HN (2005) Attenuation of aortic baroreflex responses by microinjections of endomorphin-2 into the rostral ventrolateral medullary pressor area of the rat. Am J Physiol (Reg I) 289:R59–R67

    CAS  Google Scholar 

  16. Kawabe T, Chitravanshi VC, Kawabe K, Sapru HN (2006) Cardiovascular effects of adrenocorticotropin microinjections into the rostral ventrolateral medullary pressor area of the rat. Brain Res 1102:117–126

    Article  PubMed  CAS  Google Scholar 

  17. Kido H, Sasaki S, Oguni A, Harada S, Morimoto S, Takeda K, Nakagawa M (2004) Effects of angiotensin II type 1 receptor antagonist on pressor responses to pulsatile compression of the rostral ventrolateral medulla in rats. Hypertens Res 27:427–432

    Article  PubMed  CAS  Google Scholar 

  18. Machado BH, Bonagamba LGH, Dun SL, Kwok EH, Dun NJ (2002) Pressor response to microinjection of orexin/hypocretin into rostral ventrolateral medulla of awake rats. Regul Peptides 104:75–81

    Article  CAS  Google Scholar 

  19. Madden CJ, Satoru I, Rinaman L, Wiley RG, Sved AF (1999) Lesions of the C1 catecholaminergic neurons of the ventrolateral medulla in rats using anti-DÎ2H-saporin. Am J Physiol (Reg I) 277:R1063–R1075

    CAS  Google Scholar 

  20. Marchenko V, Sapru HN (2003) Cardiovascular responses to chemical stimulation of the lateral tegmental field and adjacent medullary reticular formation in the rat. Brain Res 977:247–260

    Article  PubMed  CAS  Google Scholar 

  21. Martins-Pinge MC, Becker LK, Luccizano Garcia MR, Zoccal DB, Neto RV, Basso LS, De Souza HCD, Lopes OU (2005) Attenuated pressor responses to amino acids in the rostral ventrolateral medulla after swimming training in conscious rats. Auton Neurosci (Basic) 122:21–28

    Article  CAS  Google Scholar 

  22. Minson JB, Chalmers JP, Caon AC, Renaud B (1987) Separate areas of rat medulla oblongata with populations of serotonin- and adrenaline-containing neurons alter blood pressure after L-glutamate stimulation. J Auton Nerv Syst 19:39–50

    Article  PubMed  CAS  Google Scholar 

  23. Muratani H, Averill DB, Ferrario CM (1991) Effect of angiotensin II in ventrolateral medulla of spontaneously hypertensive rats. Am J Physiol (Reg I) 260:R977–R984

    CAS  Google Scholar 

  24. Ross CA, Ruggiero DA, Park DH (1984) Tonic vasomotor control by the rostral ventrolateral medulla: Effects of electrical or chemical stimulation of the area containing C1 adrenaline neurons on arterial pressure, heart rate, and plasma catecholamines and vasopressin. J Neurosci 4:474–494

    PubMed  CAS  Google Scholar 

  25. Sakima A, Yamazato M, Sesoko S, Muratani H, Fukiyama K (2000) Cardiovascular and sympathetic Effects of L-glutamate and glycine injected into the rostral ventrolateral medulla of conscious rats. Hypertens Res 23:633–641

    Article  PubMed  CAS  Google Scholar 

  26. Schreihofer AM, Ito S, Sved AF (2005) Brain stem control of arterial pressure in chronic arterial baroreceptor-denervated rats. Am J Physiol 289:R1746–R1755

    CAS  Google Scholar 

  27. Seyedabadi M, Goodchild AK, Pilowsky PM (2001) Differential role of kinases in brain stem of hypertensive and normotensive rats. Hypertension 38:1087–1092

    Article  PubMed  CAS  Google Scholar 

  28. Smith JK, Barron KW (1990) The rostral and caudal ventrolateral medulla in young spontaneously hypertensive rats. Brain Res 506:153–158

    Article  PubMed  CAS  Google Scholar 

  29. Smith JK, Barron KW (1990) Cardiovascular effects of L-glutamate and tetrodotoxin microinjected into the rostral and caudal ventrolateral medulla in normotensive and spontaneously hypertensive rats. Brain Res 506:1–8

    Article  PubMed  CAS  Google Scholar 

  30. Tsuchihashi T, Kagiyama S, Onaka U, Abe I, Fujishima M (1997) Pressor and sympathetic responses to excitatory amino acids are not augmented in the ventrolateral medulla of Dahl salt-sensitive rats. Brain Res 750:195–200

    Article  PubMed  CAS  Google Scholar 

  31. Tsuchihashi T, Kagiyama S, Ohya Y, Abe I, Fujishima M (1998) Antihypertensive treatment and the responsiveness to glutamate in ventrolateral medulla. Hypertension 31:73–76

    Article  PubMed  CAS  Google Scholar 

  32. Tsuchihashi T, Kagiyama S, Matsumura K, Lin Y, Abe I, Fujishima M (2000) Cardiovascular responses to glutamate and angiotensin II in ventrolateral medulla of hypertension induced by chronic inhibition of nitric oxide. Hypertens Res 23:359–364

    Article  PubMed  CAS  Google Scholar 

  33. Urbanski RW, Sapru HN (1988) Evidence for a sympathoexcitatory pathway from the nucleus tractus solitarii to the ventrolateral medullary pressor area. J Auton Nerv Syst 23:161–174

    Article  PubMed  CAS  Google Scholar 

  34. Vieira AA, Colombari E, De Luca Jr LA, de Almeida Colombari DS, Menani JV (2007) Central cholinergic blockade reduces the pressor response to L-glutamate into the rostral ventrolateral medullary pressor area. Brain Res 1155:100–107

    Article  PubMed  CAS  Google Scholar 

  35. Willette RN, Krieger AJ, Barcas PP, Sapru HN (1983) Medullary gamma-aminobutyric acid (GABA) receptors and the regulation of blood pressure in the rat. J Pharmacol Exp Ther 226:893–899

    PubMed  CAS  Google Scholar 

  36. Willette RN, Punnen-Grandy S, Krieger AJ, Sapru HN (1987) Differential regulation of regional vascular resistance by the rostral and caudal ventrolateral medulla in the rat. J Auton Nerv Syst 18:143–151

    Article  PubMed  CAS  Google Scholar 

  37. Xu Y, Krukoff TL (2004) Adrenomedullin in the rostral ventrolateral medulla increases arterial pressure and heart rate: roles of glutamate and nitric oxide. Am J Physiol Regul Integr Comp Physiol 287:R729–R734

    Article  PubMed  CAS  Google Scholar 

  38. Yajima Y, Ito S, Komatsu K, Tsukamoto K, Matsumoto K, Hirayama A (2008) Enhanced response from the caudal pressor area in spontaneously hypertensive rats. Brain Res 1227:89–95

    Article  PubMed  CAS  Google Scholar 

  39. Morimoto S, Sasaki S, Miki S, Kawa T, Nakamura K, Ichida T, Itoh H, Nakata T, Takeda K, Nakagawa M, Yamada H (1999) Pressor response to compression of the ventrolateral medulla mediated by glutamate receptors. Hypertension 33:1207–1213

    Article  PubMed  CAS  Google Scholar 

  40. Curtis DR, Lodge D, McLennan H (1979) The excitation and depression of spinal neurones by ibotenic acid. J Physiol 291:19–28

    PubMed  CAS  Google Scholar 

  41. Flatman JA, Lambert JD (1979) Sustained extracellular potentials in the cat spinal cord during the microiontophoretic application of excitatory amino acids. J Neurosci Methods 1:205–218

    Article  PubMed  CAS  Google Scholar 

  42. Talman WT, Perrone MH, Reis DJ (1980) Evidence for L-glutamate as the neurotransmitter of baroreceptor afferent nerve fibers. Science 209:813–815

    Article  PubMed  CAS  Google Scholar 

  43. Zieglgansberger W, Puil EA (1973) Actions of glutamic acid on spinal neurones. Exp Brain Res 17:35–49

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

AHG is supported by a Macquarie University Research Excellence Scholarship. PMP is supported by funding from the National Health and Medical Research Council of Australia (457080, 604002, 1024489, 1030297), the Australian Research Council (DP110102110, LP120100463), the Heart Foundation of Australia (G 11S 5957), and Macquarie University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M. Pilowsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gaede, A.H., Pilowsky, P.M. (2013). Excitatory Responses to Microinjection of Glutamate Depend on Dose Not Volume: A Meta-Analysis of Studies in Rat RVLM. In: Pilowsky, P., Farnham, M., Fong, A. (eds) Stimulation and Inhibition of Neurons. Neuromethods, vol 78. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-233-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-233-9_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-232-2

  • Online ISBN: 978-1-62703-233-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics