Skip to main content

Sensible Use of High-Sensitivity Troponin Assays

  • Protocol
  • First Online:
Calcium-Binding Proteins and RAGE

Part of the book series: Methods in Molecular Biology ((MIMB,volume 963))

Abstract

The first intracellular Ca2+-sensor protein to be described was the troponin complex. Only later it was ­discovered that cardiac-specific isoforms of troponin I (cTnI) and troponin T (cTnT) exist, and nowadays, measurement of cardiac troponins is a corner stone in the diagnosis of patients with acute coronary syndrome (ACS). High-sensitivity (hs-) assays have been developed that can record slightly elevated plasma concentrations of cardiac troponins as early as 3 h after onset of clinical symptoms. International guidelines defined a diagnostic cut-off at cardiac troponin levels corresponding to the 99th percentile of a healthy reference population and require that hs-assays measure this concentration with an interassay coefficient of variation ≤10%. This review provides an overview of the diagnostic and prognostic use of cardiac troponins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schaub MC, Heizmann CW (2008) Calcium, troponin, calmodulin, S100 proteins: from myocardial basics to new therapeutic strategies. Biochem Biophys Res Commun 369:247–264

    Article  PubMed  CAS  Google Scholar 

  2. Cummins B, Auckland ML, Cummins P (1987) Cardiac-specific troponin-I radioimmunoassay in the diagnosis of acute myocardial infarction. Am Heart J 113:1333–1344

    Article  PubMed  CAS  Google Scholar 

  3. Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80:853–924

    PubMed  CAS  Google Scholar 

  4. Manning EP, Tardiff JC, Schwartz SD (2011) A model of calcium activation of the cardiac thin filament. Biochemistry 50:7405–7413

    Article  PubMed  CAS  Google Scholar 

  5. Jin JP, Zhang Z, Bautista JA (2008) Isoform diversity, regulation, and functional adaptation of troponin and calponin. Crit Rev Eukaryot Gene Expr 18:93–124

    Article  PubMed  CAS  Google Scholar 

  6. Wei B, Jin JP (2011) Troponin T isoforms and posttranscriptional modifications: evolution, regulation and function. Arch Biochem Biophys 505:144–154

    Article  PubMed  CAS  Google Scholar 

  7. Solaro RJ, van der Velden J (2010) Why does troponin I have so many phosphorylation sites? Fact and fancy. J Mol Cell Cardiol 48:810–816

    Article  PubMed  CAS  Google Scholar 

  8. Zhang J et al (2011) Phosphorylation, but not alternative splicing or proteolytic degradation, is conserved in human and mouse cardiac troponin T. Biochemistry 50:6081–6092

    Article  PubMed  CAS  Google Scholar 

  9. Di Lisa F et al (1995) Specific degradation of troponin T and I by mu-calpain and its modulation by substrate phosphorylation. Biochem J 308:57–61

    PubMed  Google Scholar 

  10. Stary HC et al (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 92:1355–1374

    Article  PubMed  CAS  Google Scholar 

  11. Stary HC et al (1994) A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 89:2462–2478

    Article  PubMed  CAS  Google Scholar 

  12. Libby P, Ridker PM, Hansson GK (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473:317–325

    Article  PubMed  CAS  Google Scholar 

  13. Libby P (2009) Molecular and cellular mechanisms of the thrombotic complications of atherosclerosis. J Lipid Res 50(Suppl):S352–357

    Article  PubMed  Google Scholar 

  14. Arbustini E et al (1999) Plaque erosion is a major substrate for coronary thrombosis in acute myocardial infarction. Heart 82:269–272

    PubMed  CAS  Google Scholar 

  15. Hamm CW et al (2011) ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: the Task Force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 32:2999–3054

    Article  PubMed  Google Scholar 

  16. Rioufol G et al (2002) Multiple atherosclerotic plaque rupture in acute coronary syndrome: a three-vessel intravascular ultrasound study. Circulation 106:804–808

    Article  PubMed  CAS  Google Scholar 

  17. Naghavi M et al (2003) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part II. Circulation 108:1772–1778

    Article  PubMed  Google Scholar 

  18. Naghavi M et al (2003) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I. Circulation 108:1664–1672

    Article  PubMed  Google Scholar 

  19. Van de Werf F et al (2008) Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation: the Task Force on the Management of ST-Segment Elevation Acute Myocardial Infarction of the European Society of Cardiology. Eur Heart J 29:2909–2945

    Article  PubMed  Google Scholar 

  20. Bleier J et al (1998) Different intracellular compartmentations of cardiac troponins and myosin heavy chains: a causal connection to their different early release after myocardial damage. Clin Chem 44:1912–1918

    PubMed  CAS  Google Scholar 

  21. Gerhardt W et al (1991) S-troponin T in suspected ischemic myocardial injury compared with mass and catalytic concentrations of S-creatine kinase isoenzyme MB. Clin Chem 37:1405–1411

    PubMed  CAS  Google Scholar 

  22. Morrow DA et al (2007) National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines: clinical characteristics and utilization of biochemical markers in acute coronary syndromes. Circulation 115:e356–375

    Article  PubMed  Google Scholar 

  23. Thomas L (2005) Labor und Diagnose, 6th edn. TH-Books Verlagsgesellschaft, Frankfurt

    Google Scholar 

  24. Apple FS et al (2007) National Academy of Clinical Biochemistry and IFCC Committee for Standardization of Markers of Cardiac Damage Laboratory Medicine Practice Guidelines: analytical issues for biochemical markers of acute coronary syndromes. Clin Chem 53:547–551

    Article  PubMed  CAS  Google Scholar 

  25. Morrow DA et al (2007) National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines: clinical characteristics and utilization of biochemical markers in acute coronary syndromes. Clin Chem 53:552–574

    Article  PubMed  CAS  Google Scholar 

  26. Anderson JL et al (2007) ACC/AHA 2007 guidelines for the management of patients with unstable angina/non ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines for the Management of Patients With Unstable Angina/Non ST-Elevation Myocardial Infarction): developed in collaboration with the American College of Emergency Physicians, the Society for Cardiovascular Angiography and Interventions, and the Society of Thoracic Surgeons: endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation and the Society for Academic Emergency Medicine. Circulation 116:e148–304

    Article  PubMed  Google Scholar 

  27. Saenger AK, Jaffe AS (2008) Requiem for a heavyweight: the demise of creatine kinase-MB. Circulation 118:2200–2206

    Article  PubMed  Google Scholar 

  28. Thygesen K et al (2007) Universal definition of myocardial infarction. Circulation 116:2634–2653

    Article  PubMed  Google Scholar 

  29. Collinson P et al (2008) How well do laboratories follow guidelines on cardiac markers? The cardiac marker guideline uptake in Europe study. Clin Chem 54:448–449

    Article  PubMed  CAS  Google Scholar 

  30. Collinson P et al (2011) Evidence-based laboratory medicine: how well do laboratories follow recommendations and guidelines? The Cardiac Marker Guideline Uptake in Europe (CARMAGUE) study. Clin Chem 58:305–306

    Article  PubMed  Google Scholar 

  31. Than M et al (2011) A 2-h diagnostic protocol to assess patients with chest pain symptoms in the Asia-Pacific region (ASPECT): a prospective observational validation study. Lancet 377:1077–1084

    Article  PubMed  Google Scholar 

  32. Bates KJ et al (2010) Circulating immunoreactive cardiac troponin forms determined by gel filtration chromatography after acute myocardial infarction. Clin Chem 56:952–958

    Article  PubMed  CAS  Google Scholar 

  33. Giuliani I et al (1999) Determination of cardiac troponin I forms in the blood of patients with acute myocardial infarction and patients receiving crystalloid or cold blood cardioplegia. Clin Chem 45:213–222

    PubMed  CAS  Google Scholar 

  34. Katrukha AG et al (1997) Troponin I is released in bloodstream of patients with acute myocardial infarction not in free form but as complex. Clin Chem 43:1379–1385

    PubMed  CAS  Google Scholar 

  35. Wu AH et al (1998) Characterization of cardiac troponin subunit release into serum after acute myocardial infarction and comparison of assays for troponin T and I. American Association for Clinical Chemistry Subcommittee on cTnI Standardization. Clin Chem 44:1198–1208

    PubMed  CAS  Google Scholar 

  36. Katrukha AG et al (1998) Degradation of cardiac troponin I: implication for reliable immunodetection. Clin Chem 44:2433–2440

    PubMed  CAS  Google Scholar 

  37. McDonough JL, Arrell DK, Van Eyk JE (1999) Troponin I degradation and covalent complex formation accompanies myocardial ischemia/reperfusion injury. Circ Res 84:9–20

    Article  PubMed  CAS  Google Scholar 

  38. McDonough JL et al (2001) Cardiac troponin I is modified in the myocardium of bypass patients. Circulation 103:58–64

    Article  PubMed  CAS  Google Scholar 

  39. Labugger R et al (2000) Extensive troponin I and T modification detected in serum from patients with acute myocardial infarction. Circulation 102:1221–1226

    Article  PubMed  CAS  Google Scholar 

  40. Tate JR et al (2010) Standardisation of cardiac troponin I measurement: past and present. Pathology 42:402–408

    Article  PubMed  CAS  Google Scholar 

  41. Koshida S et al (2010) Prevalence of human anti-mouse antibodies (HAMAs) in routine examinations. Clin Chim Acta 411:391–394

    Article  PubMed  CAS  Google Scholar 

  42. Todd DJ et al (2011) Erroneous augmentation of multiplex assay measurements in patients with rheumatoid arthritis due to heterophilic binding by serum rheumatoid factor. Arthritis Rheum 63:894–903

    Article  PubMed  CAS  Google Scholar 

  43. Eriksson S et al (2005) Negative interference in cardiac troponin I immunoassays by circulating troponin autoantibodies. Clin Chem 51:839–847

    Article  PubMed  CAS  Google Scholar 

  44. Eriksson S et al (2005) Comparison of cardiac troponin I immunoassays variably affected by circulating autoantibodies. Clin Chem 51:848–855

    Article  PubMed  CAS  Google Scholar 

  45. Adamczyk M, Brashear RJ, Mattingly PG (2009) Circulating cardiac troponin-I autoantibodies in human plasma and serum. Ann N Y Acad Sci 1173:67–74

    Article  PubMed  CAS  Google Scholar 

  46. Adamczyk M, Brashear RJ, Mattingly PG (2009) Prevalence of autoantibodies to cardiac troponin T in healthy blood donors. Clin Chem 55:1592–1593

    Article  PubMed  CAS  Google Scholar 

  47. Adamczyk M, Brashear RJ, Mattingly PG (2010) Coprevalence of autoantibodies to cardiac troponin I and T in normal blood donors. Clin Chem 56:676–677

    Article  PubMed  CAS  Google Scholar 

  48. Body R et al (2011) Rapid exclusion of acute myocardial infarction in patients with undetectable troponin using a high-sensitivity assay. J Am Coll Cardiol 58:1332–1339

    Article  PubMed  Google Scholar 

  49. Januzzi JL et al (2010) High-sensitivity troponin T concentrations in acute chest pain patients evaluated with cardiac computed tomography. Circulation 121:1227–1234

    Article  PubMed  CAS  Google Scholar 

  50. Antman EM et al (2000) The TIMI risk score for unstable angina/non-ST elevation MI: a method for prognostication and therapeutic decision making. JAMA 284:835–842

    Article  PubMed  CAS  Google Scholar 

  51. Eagle KA et al (2004) A validated prediction model for all forms of acute coronary syndrome: estimating the risk of 6-month postdischarge death in an international registry. JAMA 291:2727–2733

    Article  PubMed  CAS  Google Scholar 

  52. Morrow DA et al (2000) TIMI risk score for ST-elevation myocardial infarction: a convenient, bedside, clinical score for risk assessment at presentation: an intravenous nPA for treatment of infarcting myocardium early II trial substudy. Circulation 102:2031–2037

    Article  PubMed  CAS  Google Scholar 

  53. Morrow DA et al (2001) Ability of minor elevations of troponins I and T to predict benefit from an early invasive strategy in patients with unstable angina and non-ST elevation myocardial infarction: results from a randomized trial. JAMA 286:2405–2412

    Article  PubMed  CAS  Google Scholar 

  54. Apple FS et al (2009) Role of monitoring changes in sensitive cardiac troponin I assay results for early diagnosis of myocardial infarction and prediction of risk of adverse events. Clin Chem 55:930–937

    Article  PubMed  CAS  Google Scholar 

  55. Celik S et al (2011) Cardiac troponin T concentrations above the 99  th percentile value as measured by a new high-sensitivity assay predict long-term prognosis in patients with acute coronary syndromes undergoing routine early invasive strategy. Clin Res Cardiol 100:1077–1085

    Article  PubMed  CAS  Google Scholar 

  56. Kavsak PA et al (2009) Short- and long-term risk stratification using a next-generation, high-sensitivity research cardiac troponin I (hs-cTnI) assay in an emergency department chest pain population. Clin Chem 55:1809–1815

    Article  PubMed  CAS  Google Scholar 

  57. Kurz K et al (2011) Comparison of the new high sensitive cardiac troponin T with myoglobin, h-FABP and cTnT for early identification of myocardial necrosis in the acute coronary syndrome. Clin Res Cardiol 100:209–215

    Article  PubMed  CAS  Google Scholar 

  58. Lindahl B, Venge P, James S (2010) The new high-sensitivity cardiac troponin T assay improves risk assessment in acute coronary syndromes. Am Heart J 160:224–229

    Article  PubMed  CAS  Google Scholar 

  59. O’Connor RE et al (2010) Part 10: acute coronary syndromes: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 122:S787–817

    Article  PubMed  Google Scholar 

  60. Scirica BM et al (2011) Assessment of multiple cardiac biomarkers in non-ST-segment elevation acute coronary syndromes: observations from the MERLIN-TIMI 36 trial. Eur Heart J 32:697–705

    Article  PubMed  CAS  Google Scholar 

  61. Hochholzer W et al (2011) Incremental value of high-sensitivity cardiac troponin T for risk prediction in patients with suspected acute myocardial infarction. Clin Chem 57:1318–1326

    Article  PubMed  CAS  Google Scholar 

  62. Meune C et al (2011) The GRACE score’s performance in predicting in-hospital and 1-year outcome in the era of high-sensitivity cardiac troponin assays and B-type natriuretic peptide. Heart 97:1479–1483

    Article  Google Scholar 

  63. Ndrepepa G et al. (2011) Comparison of prognostic value of high-sensitivity and conventional troponin T in patients with non-ST-segment elevation acute coronary syndromes. Clin Chim Acta 412: 1350–1356  

    Google Scholar 

  64. Mills NL et al (2011) Implementation of a sensitive troponin I assay and risk of recurrent myocardial infarction and death in patients with suspected acute coronary syndrome. JAMA 305:1210–1216

    Article  PubMed  CAS  Google Scholar 

  65. Korff S, Katus HA, Giannitsis E (2006) Differential diagnosis of elevated troponins. Heart 92:987–993

    Article  PubMed  CAS  Google Scholar 

  66. Roongsritong C, Warraich I, Bradley C (2004) Common causes of troponin elevations in the absence of acute myocardial infarction: incidence and clinical significance. Chest 125:1877–1884

    Article  PubMed  CAS  Google Scholar 

  67. Omland T et al (2009) A sensitive cardiac troponin T assay in stable coronary artery disease. N Engl J Med 361:2538–2547

    Article  PubMed  CAS  Google Scholar 

  68. Reiter M et al (2011) Early diagnosis of acute myocardial infarction in patients with pre-existing coronary artery disease using more sensitive cardiac troponin assays. Eur Heart J 33:988–997. doi:"10.1093/eurheartj/ehr376", E-pub ahead of print

    Article  PubMed  Google Scholar 

  69. Aviles RJ et al (2002) Troponin T levels in patients with acute coronary syndromes, with or without renal dysfunction. N Engl J Med 346:2047–2052

    Article  PubMed  CAS  Google Scholar 

  70. Apple FS et al (2002) Predictive value of cardiac troponin I and T for subsequent death in end-stage renal disease. Circulation 106:2941–2945

    Article  PubMed  CAS  Google Scholar 

  71. Dierkes J et al (2000) Cardiac troponin T predicts mortality in patients with end-stage renal disease. Circulation 102:1964–1969

    Article  PubMed  CAS  Google Scholar 

  72. Ooi DS et al (1999) Increased mortality in hemodialyzed patients with elevated serum troponin T: a one-year outcome study. Clin Biochem 32:647–652

    Article  PubMed  CAS  Google Scholar 

  73. Reiter M et al (2011) Early diagnosis of acute myocardial infarction in the elderly using more sensitive cardiac troponin assays. Eur Heart J 32:1379–1389

    Article  PubMed  Google Scholar 

  74. Hickman PE et al (2010) Cardiac troponin may be released by ischemia alone, without necrosis. Clin Chim Acta 411:318–323

    Article  PubMed  CAS  Google Scholar 

  75. Saunders JT et al (2011) Cardiac troponin T measured by a highly sensitive assay predicts coronary heart disease, heart failure, and mortality in the Atherosclerosis Risk in Communities Study. Circulation 123:1367–1376

    Article  PubMed  CAS  Google Scholar 

  76. de Lemos JA et al (2010) Association of troponin T detected with a highly sensitive assay and cardiac structure and mortality risk in the general population. JAMA 304:2503–2512

    Article  PubMed  Google Scholar 

  77. Blankenberg S et al (2010) Contribution of 30 biomarkers to 10-year cardiovascular risk estimation in 2 population cohorts: the MONICA, risk, genetics, archiving, and monograph (MORGAM) biomarker project. Circulation 121:2388–2397

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold von Eckardstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hof, D., Klingenberg, R., von Eckardstein, A. (2013). Sensible Use of High-Sensitivity Troponin Assays. In: Heizmann, C. (eds) Calcium-Binding Proteins and RAGE. Methods in Molecular Biology, vol 963. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-230-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-230-8_24

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-229-2

  • Online ISBN: 978-1-62703-230-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics