Skip to main content

RAGE Splicing Variants in Mammals

  • Protocol
  • First Online:
Calcium-Binding Proteins and RAGE

Part of the book series: Methods in Molecular Biology ((MIMB,volume 963))

Abstract

The receptor for advanced glycation end products (RAGE) is a multiligand receptor of environmental stressors which plays key roles in pathophysiological processes, including immune/inflammatory disorders, Alzheimer’s disease, diabetic arteriosclerosis, tumorigenesis, and metastasis. Besides the full-length RAGE protein in humans nearly 20 natural occurring RAGE splicing variants were described on mRNA and protein level. These naturally occurring isoforms are characterized by either N-terminally or C-terminally truncations and are discussed as possible regulators of the full-length RAGE receptor either by competitive ligand binding or by displacing the full-length protein in the membrane. Accordingly, expression deregulations of the naturally occurring isoforms were supposed to have significant effect on RAGE-mediated disorders. Thereby the soluble C-truncated RAGE isoforms present in plasma and tissues are the mostly focused isoforms in research and clinics. Deregulations of the circulating levels of soluble RAGE forms were reported in several RAGE-associated pathological disorders including for example atherosclerosis, diabetes, renal failure, Alzheimer’s disease, and several cancer types.

Regarding other mammalian species, the canine RAGE gene showed high similarities to the corresponding human structures indicating RAGE to be evolutionary highly conserved between both species. Similar to humans the canine RAGE showed a complex and extensive splicing activity leading to a manifold pattern of RAGE isoforms. Due to the similarities seen in several canine and human diseases—including cancer—comparative structural and functional analyses allow the development of RAGE and ligand-specific therapeutic approaches beneficial for human and veterinary medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neeper M et al (1992) Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 267:14998–15004

    PubMed  CAS  Google Scholar 

  2. Chavakis T et al (2003) The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment. J Exp Med 198:1507–1515

    Article  PubMed  CAS  Google Scholar 

  3. Hofmann MA et al (1999) RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97:889–901

    Article  PubMed  CAS  Google Scholar 

  4. Hori O et al (1995) The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J Biol Chem 270:25752–25761

    Article  PubMed  CAS  Google Scholar 

  5. Yan SD et al (1996) RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 382:685–691

    Article  PubMed  CAS  Google Scholar 

  6. Sugaya K et al (1994) Three genes in the human MHC class III region near the junction with the class II: gene for receptor of advanced glycosylation end products, PBX2 homeobox gene and a notch homolog, human counterpart of mouse mammary tumor gene int-3. Genomics 23:408–419

    Article  PubMed  CAS  Google Scholar 

  7. Vissing H et al (1994) Localization of the human gene for advanced glycosylation end product-specific receptor (AGER) to chromosome 6p21.3. Genomics 24:606–608

    Article  PubMed  CAS  Google Scholar 

  8. Schmidt AM et al (2001) The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest 108:949–955

    PubMed  CAS  Google Scholar 

  9. Deora AA et al (1998) A redox-triggered ras-effector interaction. Recruitment of phosphatidylinositol 3′-kinase to Ras by redox stress. J Biol Chem 273:29923–29928

    Article  PubMed  CAS  Google Scholar 

  10. Huang JS et al (2001) Role of receptor for advanced glycation end-product (RAGE) and the JAK/STAT-signaling pathway in AGE-induced collagen production in NRK-49F cells. J Cell Biochem 81:102–113

    Article  PubMed  CAS  Google Scholar 

  11. Huttunen HJ, Fages C, Rauvala H (1999) Receptor for advanced glycation end products (RAGE)-mediated neurite outgrowth and activation of NF-kappaB require the cytoplasmic domain of the receptor but different downstream signaling pathways. J Biol Chem 274:19919–19924

    Article  PubMed  CAS  Google Scholar 

  12. Huttunen HJ, Kuja-Panula J, Rauvala H (2002) Receptor for advanced glycation end products (RAGE) signaling induces CREB-dependent chromogranin expression during neuronal differentiation. J Biol Chem 277:38635–38646

    Article  PubMed  CAS  Google Scholar 

  13. Kislinger T et al (1999) N(epsilon)-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. J Biol Chem 274:31740–31749

    Article  PubMed  CAS  Google Scholar 

  14. Lander HM et al (1997) Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J Biol Chem 272:17810–17814

    Article  PubMed  CAS  Google Scholar 

  15. Yan SD et al (1994) Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J Biol Chem 269:9889–9897

    PubMed  CAS  Google Scholar 

  16. Cipollone F et al (2003) The receptor RAGE as a progression factor amplifying arachidonate-dependent inflammatory and proteolytic response in human atherosclerotic plaques: role of glycemic control. Circulation 108:1070–1077

    Article  PubMed  CAS  Google Scholar 

  17. Park L et al (1998) Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat Med 4:1025–1031

    Article  PubMed  CAS  Google Scholar 

  18. Goova MT et al (2001) Blockade of receptor for advanced glycation end-products restores effective wound healing in diabetic mice. Am J Pathol 159:513–525

    Article  PubMed  CAS  Google Scholar 

  19. Lue LF et al (2001) Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer’s disease: identification of a cellular activation mechanism. Exp Neurol 171:29–45

    Article  PubMed  CAS  Google Scholar 

  20. Lue LF et al (2005) Preventing activation of receptor for advanced glycation endproducts in Alzheimer’s disease. Curr Drug Targets CNS Neurol Disord 4:249–266

    Article  PubMed  CAS  Google Scholar 

  21. Hofmann MA et al (2002) RAGE and arthritis: the G82S polymorphism amplifies the inflammatory response. Genes Immun 3:123–135

    Article  PubMed  CAS  Google Scholar 

  22. Chavakis T, Bierhaus A, Nawroth PP (2004) RAGE (receptor for advanced glycation end products): a central player in the inflammatory response. Microbes Infect 6:1219–1225

    Article  PubMed  CAS  Google Scholar 

  23. Taguchi A et al (2000) Blockade of RAGE-amphoterin signalling suppresses tumor growth and metastases. Nature 405:354–360

    Article  PubMed  CAS  Google Scholar 

  24. Huttunen HJ et al (2002) Receptor for advanced glycation end products-binding COOH-terminal motif of amphoterin inhibits invasive migration and metastasis. Cancer Res 62:4805–4811

    PubMed  CAS  Google Scholar 

  25. Bartling B et al (2005) Down-regulation of the receptor for advanced glycation end-products (RAGE) supports non-small cell lung carcinoma. Carcinogenesis 26:293–301

    Article  PubMed  CAS  Google Scholar 

  26. Bhawal UK et al (2005) Association of expression of receptor for advanced glycation end products and invasive activity of oral squamous cell carcinoma. Oncology 69:246–255

    Article  PubMed  CAS  Google Scholar 

  27. Ishiguro H et al (2005) Receptor for advanced glycation end products (RAGE) and its ligand, amphoterin are overexpressed and associated with prostate cancer development. Prostate 64:92–100

    Article  PubMed  CAS  Google Scholar 

  28. Malherbe P et al (1999) cDNA cloning of a novel secreted isoform of the human receptor for advanced glycation end products and characterization of cells co-expressing cell-surface scavenger receptors and Swedish mutant amyloid precursor protein. Brain Res Mol Brain Res 71:159–170

    Article  PubMed  CAS  Google Scholar 

  29. Schlueter C et al (2003) Tissue-specific expression patterns of the RAGE receptor and its soluble forms—a result of regulated alternative splicing? Biochim Biophys Acta 1630:1–6

    Article  PubMed  CAS  Google Scholar 

  30. Yonekura H et al (2003) Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury. Biochem J 370:1097–1109

    Article  PubMed  CAS  Google Scholar 

  31. Park IH et al (2004) Expression of a novel secreted splice variant of the receptor for advanced glycation end products (RAGE) in human brain astrocytes and peripheral blood mononuclear cells. Mol Immunol 40:1203–1211

    Article  PubMed  CAS  Google Scholar 

  32. Ding Q, Keller JN (2005) Evaluation of rage isoforms, ligands, and signaling in the brain. Biochim Biophys Acta 1746:18–27

    Article  PubMed  CAS  Google Scholar 

  33. Ding Q, Keller JN (2005) Splice variants of the receptor for advanced glycosylation end products (RAGE) in human brain. Neurosci Lett 373:67–72

    Article  PubMed  CAS  Google Scholar 

  34. Hudson BI et al (2008) Identification, classification, and expression of RAGE gene splice variants. FASEB J 22:1572–1580

    Article  PubMed  CAS  Google Scholar 

  35. Geroldi D et al (2005) Decreased plasma levels of soluble receptor for advanced glycation end-products in patients with essential hypertension. J Hypertens 23(9):1725–1729

    Article  PubMed  CAS  Google Scholar 

  36. Parkin E, Harris B (2009) A disintegrin and metalloproteinase (ADAM)-mediated ectodomain shedding of ADAM10. J Neurochem 108:1464–1479

    Article  PubMed  CAS  Google Scholar 

  37. Raucci A et al (2008) A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane-bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10). FASEB J 22:3716–3727

    Article  PubMed  CAS  Google Scholar 

  38. Zhang L et al (2008) Receptor for advanced glycation end products is subjected to protein ectodomain shedding by metalloproteinases. J Biol Chem 283:35507–35516

    Article  PubMed  CAS  Google Scholar 

  39. Santilli F et al (2009) Soluble forms of RAGE in human diseases: clinical and therapeutical implications. Curr Med Chem 16:940–952

    Article  PubMed  CAS  Google Scholar 

  40. Vazzana N et al (2009) Soluble forms of RAGE in internal medicine. Intern Emerg Med 4:389–401

    Article  PubMed  Google Scholar 

  41. Maillard-Lefebvre H et al (2009) Soluble receptor for advanced glycation end products: a new biomarker in diagnosis and prognosis of chronic inflammatory diseases. Rheumatology (Oxford) 48:1190–1196

    Article  Google Scholar 

  42. Emanuele E et al (2005) Circulating levels of soluble receptor for advanced glycation end products in Alzheimer disease and vascular dementia. Arch Neurol 62:1734–1736

    Article  PubMed  Google Scholar 

  43. Jing R et al (2010) Receptor for advanced glycation end products (RAGE) soluble form (sRAGE): a new biomarker for lung cancer. Neoplasma 57:55–61

    Article  PubMed  CAS  Google Scholar 

  44. Jing RR et al (2010) Tissue-specific expression profiling of receptor for advanced glycation end products and its soluble forms in esophageal and lung cancer. Genet Test Mol Biomarkers 14:355–361

    Article  PubMed  CAS  Google Scholar 

  45. Takeuchi A et al (2007) Endogenous secretory receptor for advanced glycation endproducts as a novel prognostic marker in chondrosarcoma. Cancer 109:2532–2540

    Article  PubMed  CAS  Google Scholar 

  46. Kalea AZ et al (2010) Alternatively spliced RAGEv1 inhibits tumorigenesis through suppression of JNK signaling. Cancer Res 70:5628–5638

    Article  PubMed  CAS  Google Scholar 

  47. Kalea AZ et al (2009) Alternative splicing of the murine receptor for advanced glycation end-products (RAGE) gene. FASEB J 23:1766–1774

    Article  PubMed  CAS  Google Scholar 

  48. Sterenczak KA et al (2009) Cloning, characterisation, and comparative quantitative expression analyses of receptor for advanced glycation end products (RAGE) transcript forms. Gene 434:35–42

    Article  PubMed  CAS  Google Scholar 

  49. Murua Escobar H et al (2006) Cloning and characterization of the canine receptor for advanced glycation end products. Gene 369:45–52

    Article  PubMed  Google Scholar 

  50. Breen M et al (1999) Reciprocal chromosome painting reveals detailed regions of conserved synteny between the karyotypes of the domestic dog (Canis familiaris) and human. Genomics 61:145–155

    Article  PubMed  CAS  Google Scholar 

  51. Yang F et al (1999) A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps. Genomics 62:189–202

    Article  PubMed  CAS  Google Scholar 

  52. Harashima A et al (2006) Identification of mouse orthologue of endogenous secretory receptor for advanced glycation end-products: structure, function and expression. Biochem J 396:109–115

    Article  PubMed  CAS  Google Scholar 

  53. Khajavi M, Inoue K, Lupski JR (2006) Nonsense-mediated mRNA decay modulates clinical outcome of genetic disease. Eur J Hum Genet 14:1074–1081

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Murua Escobar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sterenczak, K.A., Nolte, I., Escobar, H.M. (2013). RAGE Splicing Variants in Mammals. In: Heizmann, C. (eds) Calcium-Binding Proteins and RAGE. Methods in Molecular Biology, vol 963. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-230-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-230-8_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-229-2

  • Online ISBN: 978-1-62703-230-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics