Skip to main content

Measurement of Intracellular Ca2+ Concentration in Single Cells Using Ratiometric Calcium Dyes

  • Protocol
  • First Online:
Calcium-Binding Proteins and RAGE

Part of the book series: Methods in Molecular Biology ((MIMB,volume 963))

Abstract

Measurement of intracellular Ca2+ concentration ([Ca2+]i) is useful to study the upstream and downstream events of Ca2+ signaling. Ca2+-binding proteins including EF-hand-containing proteins are important downstream effector molecules after an increase of [Ca2+]i. Conversely, these proteins can also act as key modulators for regulation of [Ca2+]i by sensing the Ca2+ levels in the intracellular organelles and cytoplasm. Here we describe a single-cell Ca2+ imaging technique that was used to measure the intracellular Ca2+ levels to examine the function of Ca2+-binding proteins, STIM1 and Calcium release-activated Calcium channel regulator 2A (CRACR2A), using ratiometric Ca2+ dye Fura-2 in adherent and non-adherent cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lewis RS (2011) Store-operated calcium channels: new perspectives on mechanism and function. Cold Spring Harb Perspect Biol. doi: 10.1101/cshperspect.a003970

  2. Putney JW (2009) Capacitative calcium entry: from concept to molecules. Immunol Rev 231:10–22

    Article  PubMed  CAS  Google Scholar 

  3. Cahalan MD, Chandy KG (2009) The functional network of ion channels in T lymphocytes. Immunol Rev 231:59–87

    Article  PubMed  CAS  Google Scholar 

  4. Hogan PG, Lewis RS, Rao A (2010) Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu Rev Immunol 28:491–533

    Article  PubMed  CAS  Google Scholar 

  5. Hogan PG, Chen L, Nardone J et al (2003) Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 17:2205–2232

    Article  PubMed  CAS  Google Scholar 

  6. Srikanth S, Jung HJ, Kim KD et al (2010) A novel EF-hand protein, CRACR2A, is a cytosolic Ca2+ sensor that stabilizes CRAC channels in T cells. Nat Cell Biol 12:436–446

    Article  PubMed  CAS  Google Scholar 

  7. Liou J, Kim ML, Heo WD et al (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241

    Article  PubMed  CAS  Google Scholar 

  8. Roos J, Digregorio PJ, Yeromin AV et al (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445

    Article  PubMed  CAS  Google Scholar 

  9. Zhang SL, Yu Y, Roos J et al (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437:902–905

    Article  PubMed  CAS  Google Scholar 

  10. Feske S, Gwack Y, Prakriya M et al (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185

    Article  PubMed  CAS  Google Scholar 

  11. Vig M, Peinelt C, Beck A et al (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312:1220–1223

    Article  PubMed  CAS  Google Scholar 

  12. Zhang SL, Yeromin AV, Zhang XH et al (2006) Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. Proc Natl Acad Sci USA 103:9357–9362

    Article  PubMed  CAS  Google Scholar 

  13. Gwack Y, Srikanth S, Feske S et al (2007) Biochemical and functional characterization of Orai proteins. J Biol Chem 282:16232–16243

    Article  PubMed  CAS  Google Scholar 

  14. Carrasco S, Meyer T (2011) STIM proteins and the endoplasmic reticulum-plasma ­membrane junctions. Annu Rev Biochem 80:33.31–33.28

    Article  Google Scholar 

  15. Mercer JC, Dehaven WI, Smyth JT et al (2006) Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J Biol Chem 281:24979–24990

    Article  PubMed  CAS  Google Scholar 

  16. Peinelt C, Vig M, Koomoa DL et al (2006) Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat Cell Biol 8:771–773

    Article  PubMed  CAS  Google Scholar 

  17. Soboloff J, Spassova MA, Tang XD et al (2006) Orai1 and STIM reconstitute store-operated calcium channel function. J Biol Chem 281:20661–20665

    Article  PubMed  CAS  Google Scholar 

  18. Muik M, Frischauf I, Derler I et al (2008) Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J Biol Chem 283:8014–8022

    Article  PubMed  CAS  Google Scholar 

  19. Park CY, Hoover PJ, Mullins FM et al (2009) STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136:876–890

    Article  PubMed  CAS  Google Scholar 

  20. Yuan JP, Zeng W, Dorwart MR et al (2009) SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol 11:337–343

    Article  PubMed  CAS  Google Scholar 

  21. Navarro-Borelly L, Somasundaram A, Yamashita M et al (2008) STIM1-Orai1 interactions and Orai1 conformational changes revealed by live-cell FRET microscopy. J Physiol 586:5383–5401

    Article  PubMed  CAS  Google Scholar 

  22. Muik M, Fahrner M, Derler I et al (2009) A cytosolic homomerization and a modulatory domain within STIM1 C terminus determine coupling to ORAI1 channels. J Biol Chem 284:8421–8426

    Article  PubMed  CAS  Google Scholar 

  23. Liou J, Fivaz M, Inoue T et al (2007) Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc Natl Acad Sci USA 104:9301–9306

    Article  PubMed  CAS  Google Scholar 

  24. Mullins FM, Park CY, Dolmetsch RE et al (2009) STIM1 and calmodulin interact with Orai1 to induce Ca2+-dependent inactivation of CRAC channels. Proc Natl Acad Sci USA 106:15495–15500

    Article  PubMed  CAS  Google Scholar 

  25. Zweifach A, Lewis RS (1993) Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc Natl Acad Sci USA 90:6295–6299

    Article  PubMed  CAS  Google Scholar 

  26. Prakriya M, Lewis RS (2002) Separation and characterization of currents through store-operated CRAC channels and Mg2+-inhibited cation (MIC) channels. J Gen Physiol 119:487–507

    Article  PubMed  CAS  Google Scholar 

  27. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Health grants AI-083432 and AI-088393 to YG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousang Gwack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Srikanth, S., Gwack, Y. (2013). Measurement of Intracellular Ca2+ Concentration in Single Cells Using Ratiometric Calcium Dyes. In: Heizmann, C. (eds) Calcium-Binding Proteins and RAGE. Methods in Molecular Biology, vol 963. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-230-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-230-8_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-229-2

  • Online ISBN: 978-1-62703-230-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics