Skip to main content

Recombinant Poxviruses: Versatile Tools for Immunological Assays

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 960))

Abstract

The study of antigen processing and presentation is critical to our understanding of the mechanisms that govern immune surveillance. A typical requirement of assays designed to examine antigen processing and presentation is the de novo biosynthesis of a model antigen. Historically, Vaccinia virus (VACV), a poxvirus closely related to Cowpox, has enjoyed widespread use for this purpose. Recombinant poxvirus-based expression has a number of advantages over other systems. Poxviruses accommodate the insertion of large pieces of recombinant DNA into their genome, and recombination and selection are relatively efficient. Poxviruses readily infect a variety of cell types, and they drive rapid and high levels of antigen expression. Additionally, they can be utilized in a variety of assays to study both MHC class I-restricted and MHC class II-restricted antigen processing and presentation. Ultimately, the numerous advantages of poxvirus recombinants have made the Vaccinia expression system a mainstay in the study of processing and presentation over the past two decades. In an attempt to address one shortcoming of VACV while simultaneously retaining the benefits inherent to poxviruses, our laboratory has begun to engineer recombinant Ectromelia viruses. Ectromelia virus, or mousepox, is a natural pathogen of murine cells and performing experiments in the context of a natural host–pathogen relationship may elucidate unknown factors that influence epitope generation and host response. This chapter describes several recombinant poxvirus system protocols used to study both MHC class I and class II antigen processing and presentation, as well as provides insight and troubleshooting techniques to improve the reproducibility and fidelity of these experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bennink JR, Yewdell JW, Smith GL, Moller C, Moss B (1984) Recombinant vaccinia virus primes and stimulates influenza haemagglutinin-specific cytotoxic T cells. Nature 311(5986):578–579

    Article  CAS  PubMed  Google Scholar 

  2. Yewdell JW, Anderson R, Cox JH, Eisenlohr LC, Esquivel F, Lapham C, Restifo NP, Bennink JR (1993) Multiple uses of viruses for studying antigen processing. Semin Virol 4:109–116

    Article  Google Scholar 

  3. Morrison LA, Lukacher AE, Braciale VL, Fan DP, Braciale TJ (1986) Differences in antigen presentation to MHC class I-and class II-restricted influenza virus-specific cytolytic T lymphocyte clones. J Exp Med 163(4):903–921

    Article  CAS  PubMed  Google Scholar 

  4. Jaraquemada D, Marti M, Long EO (1990) An endogenous processing pathway in vaccinia virus-infected cells for presentation of cytoplasmic antigens to class II-restricted T cells. J Exp Med 172(3):947–954

    Article  CAS  PubMed  Google Scholar 

  5. Moss B (1991) Vaccinia virus: a tool for research and vaccine development. Science 252:1662–1667

    Article  CAS  PubMed  Google Scholar 

  6. Weir JP, Moss B (1984) Regulation of expression and nucleotide sequence of a late vaccinia virus gene. J Virol 51(3):662–669

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Davison AJ, Moss B (1989) Structure of vaccinia virus late promoters. J Mol Biol 210(4):771–784

    Article  CAS  PubMed  Google Scholar 

  8. Davison AJ, Moss B (1989) Structure of vaccinia virus early promoters. J Mol Biol 210(4):749–769

    Article  CAS  PubMed  Google Scholar 

  9. Moss B (1990) Regulation of vaccinia virus transcription. Annu Rev Biochem 59:661–688

    Article  CAS  PubMed  Google Scholar 

  10. Carroll MW, Moss B (1997) Host range and cytopathogenicity of the highly attenuated MVA strain of vaccinia virus: propagation and generation of recombinant viruses in a nonhuman mammalian cell line. Virology 238(2):198–211

    Article  CAS  PubMed  Google Scholar 

  11. De Clercq E (2002) Cidofovir in the treatment of poxvirus infections. Antiviral Res 55(1):1–13

    Article  PubMed  Google Scholar 

  12. Taddie JA, Traktman P (1993) Genetic characterization of the vaccinia virus DNA polymerase: cytosine arabinoside resistance requires a variable lesion conferring phosphonoacetate resistance in conjunction with an invariant mutation localized to the 3′-5′ exonuclease domain. J Virol 67(7):4323–4336

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Baxby D (1981) Jenner’s smallpox vaccine. The Riddle of the Origin of Vaccinia Virus, Heinemann, London

    Google Scholar 

  14. Esteban DJ, Buller RM (2005) Ectromelia virus: the causative agent of mousepox. J Gen Virol 86(Pt 10):2645–2659

    Article  CAS  PubMed  Google Scholar 

  15. Fenner F (1949) Mouse-pox; infectious ectromelia of mice; a review. J Immunol 63(4):341–373

    CAS  PubMed  Google Scholar 

  16. Jackson RJ, Ramsay AJ, Christensen CD, Beaton S, Hall DF, Ramshaw IA (2001) Expression of mouse interleukin-4 by a recombinant ectromelia virus suppresses cytolytic lymphocyte responses and overcomes genetic resistance to mousepox. J Virol 75(3):1205–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Centers for Disease Control and Prevention (CDC) (2008) Laboratory-acquired vaccinia exposures and infections—United States, 2005–2007. MMWR Morb Mortal Wkly Rep 57(15):401–404

    Google Scholar 

  18. Buller RM, Smith GL, Cremer K, Notkins AL, Moss B (1985) Decreased virulence of recombinant vaccinia virus expression vectors is associated with a thymidine kinase-negative phenotype. Nature 317(6040):813–815

    Article  CAS  PubMed  Google Scholar 

  19. Blasco R, Moss B (1992) Role of cell-associated enveloped vaccinia virus in cell-to-cell spread. J Virol 66(7):4170–4179

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Husain M, Moss B (2001) Vaccinia virus F13L protein with a conserved phospholipase catalytic motif induces colocalization of the B5R envelope glycoprotein in post-Golgi vesicles. J Virol 75(16):7528–7542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Blasco R, Moss B (1995) Selection of recombinant vaccinia viruses on the basis of plaque formation. Gene 158(2):157–162

    Article  CAS  PubMed  Google Scholar 

  22. Miyahira Y, Murata K, Rodriguez D, Rodriguez JR, Esteban M, Rodrigues MM, Zavala F (1995) Quantification of antigen specific CD8+ T cells using an ELISPOT assay. J Immunol Methods 181(1):45–54

    Article  CAS  PubMed  Google Scholar 

  23. Murali-Krishna K, Altman JD, Suresh M, Sourdive DJ, Zajac AJ, Miller JD, Slansky J, Ahmed R (1998) Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8(2):177–187

    Article  CAS  PubMed  Google Scholar 

  24. Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, Bell JI, McMichael AJ, Davis MM (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274(5284):94–96

    Article  CAS  PubMed  Google Scholar 

  25. Motta I, Lone YC, Kourilsky P (1998) In vitro induction of naive cytotoxic T lymphocytes with complexes of peptide and recombinant MHC class I molecules coated onto beads: role of TCR/ligand density. Eur J Immunol 28(11):3685–3695

    Article  CAS  PubMed  Google Scholar 

  26. Wherry EJ, Puorro KA, Porgador A, Eisenlohr LC (1999) The induction of virus-specific CTL as a function of increasing epitope expression: responses rise steadily until excessively high levels of epitope are attained. J Immunol 163(7):3735–3745

    CAS  PubMed  Google Scholar 

  27. Williams NS, Engelhard VH (1996) Identification of a population of CD4+ CTL that utilizes a perforin- rather than a Fas ligand-dependent cytotoxic mechanism. J Immunol 156(1):153–159

    CAS  PubMed  Google Scholar 

  28. Sanderson S, Shastri N (1994) LacZ inducible, antigen/MHC-specific T cell hybrids. Int Immunol 6(3):369–376

    Article  CAS  PubMed  Google Scholar 

  29. Yewdell JW, Bennink JR (1989) Brefeldin A specifically inhibits presentation of protein antigens to cytotoxic T lymphocytes. Science 244(4908):1072–1075

    Article  CAS  PubMed  Google Scholar 

  30. Wherry EJ, McElhaugh MJ, Eisenlohr LC (2002) Generation of CD8(+) T cell memory in response to low, high, and excessive levels of epitope. J Immunol 168(9):4455–4461

    Article  CAS  PubMed  Google Scholar 

  31. Gallimore A, Glithero A, Godkin A, Tissot AC, Pluckthun A, Elliott T, Hengartner H, Zinkernagel R (1998) Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J Exp Med 187(9):1383–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M, Altman JD, Ahmed R (1998) Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med 188(12):2205–2213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Picker LJ, Singh MK, Zdraveski Z, Treer JR, Waldrop SL, Bergstresser PR, Maino VC (1995) Direct demonstration of cytokine synthesis heterogeneity among human memory/effector T cells by flow cytometry. Blood 86(4):1408–1419

    CAS  PubMed  Google Scholar 

  34. Jin Y, Shih WK, Berkower I (1988) Human T cell response to the surface antigen of hepatitis B virus (HBsAg). Endosomal and nonendosomal processing pathways are accessible to both endogenous and exogenous antigen. J Exp Med 168(1):293–306

    Article  CAS  PubMed  Google Scholar 

  35. Tsung K, Yim JH, Marti W, Buller RM, Norton JA (1996) Gene expression and cytopathic effect of vaccinia virus inactivated by psoralen and long-wave UV light. J Virol 70(1):165–171

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Earl PL, Moss B (1993) Purification of vaccinia virus. Greene and Wiley-Interscience, New York

    Google Scholar 

  37. Sanderson S, Frauwirth K, Shastri N (1995) Expression of endogenous peptide-major histocompatibility complex class II complexes derived from invariant chain-antigen fusion proteins. Proc Natl Acad Sci U S A 92(16):7217–7221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Adam E. Snook, Ph.D., for contributing the in vivo CTL protocol. We also thank Michael A. Miller for his modifications of the MUG assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence C. Eisenlohr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Siciliano, N.A., Huang, L., Eisenlohr, L.C. (2013). Recombinant Poxviruses: Versatile Tools for Immunological Assays. In: van Endert, P. (eds) Antigen Processing. Methods in Molecular Biology™, vol 960. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-218-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-218-6_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-217-9

  • Online ISBN: 978-1-62703-218-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics