Skip to main content

The Cat Model of Spinal Cord Injury

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 76))

Abstract

The cat can recover a robust pattern of hindlimb locomotion following partial or complete spinal cord injuries. As a result, it has been instrumental in our understanding of spinal networks controlling and regulating locomotor activity. Thanks to our feline friend, spinal cord-injured humans are now trained on a treadmill to promote the recovery of walking. This chapter highlights some of the landmark studies using the cat that have led to a better understanding of the adaptive changes that take place after spinal cord injury, as well as the underlying mechanisms governing locomotor control and recovery.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

Central pattern generator (CPG):

Neuronal network that produces rhythmic activity without extraneous inputs

Pattern generator (PG):

Neuronal network that produces rhythmic activity with tonic and/or phasic sensory inputs

Spinal cat:

A cat with a complete spinal cord injury

Spinalization:

A transection or complete spinal cord injury

Spinal locomotion:

Hindlimb walking after complete spinal cord injury

AP-5:

2-Amino-5-phosphonovaleric acid

CPG:

Central pattern generator

EMG:

Electromyography

ENG:

Electroneurography

5-HT:

Serotonin

GABA:

Gamma-aminobutyric acid

L:

Lumbar

LG:

Lateral gastrocnemius

NA:

Noradrenaline

NMDA:

N-methyl-d-aspartate

PG:

Pattern generator

PICs:

Persistent inward currents

SCI:

Spinal cord injury

Srt:

Sartorius

St:

Semitendinosus

T:

Thoracic

TA:

Tibialis anterior

VL:

Vastus lateralis

References

  1. Beloozerova IN, Sirota MG (1986) Activity of motosensory cortex neurons in the cat during natural walking and stepping over obstacles. Neurophysiologia 18:546–549

    CAS  Google Scholar 

  2. McFadyen BJ, Lavoie S, Drew T (1999) Kinetic and energetic patterns for hindlimb obstacle avoidance during cat locomotion. Exp Brain Res 125:502–510

    PubMed  CAS  Google Scholar 

  3. McVea DA, Pearson KG (2006) Long-lasting memories of obstacles guide leg movements in the walking cat. J Neurosci 26:1175–1178

    PubMed  CAS  Google Scholar 

  4. Amos A, Armstrong DM, Marple-Horvat DE (1987) A ladder paradigm for studying skilled and adaptive locomotion in the cat. J Neurosci Methods 20:323–340

    PubMed  CAS  Google Scholar 

  5. Amos A, Armstrong DM, Marple-Horvat DE (1987) Four mechanisms used to study skilled and adaptive ladder locomotion in the cat. J Physiol 382:11P

    Google Scholar 

  6. Gorassini MA, Prochazka A, Hiebert GW, Gauthier MJA (1994) Corrective responses to loss of ground support during walking I. Intact cats. J Neurophysiol 71:603–609

    PubMed  CAS  Google Scholar 

  7. Hiebert GW, Gorassini MA, Jiang W, Prochazka A, Pearson KG (1994) Corrective responses to loss of ground support during walking II. Comparison of intact and chronic spinal cats. J Neurophysiol 71:611–622

    PubMed  CAS  Google Scholar 

  8. Julien C, Rossignol S (1982) Electro­neurographic recordings with polymer cuff electrodes in paralyzed cats. J Neurosci Methods 5:267–272

    PubMed  CAS  Google Scholar 

  9. Whelan PJ (1996) Control of locomotion in the decerebrate cat. Prog Neurobiol 49:481–515

    PubMed  CAS  Google Scholar 

  10. Shik ML, Severin FV, Orlovsky GN (1966) Control of walking and running by means of electrical stimulation of the mid-brain. Biophysics 11:756–765

    Google Scholar 

  11. Gerasimenko YP, Avelev VD, Nikitin OA, Lavrov IA (2003) Initiation of locomotor activity in spinal cats by epidural stimulation of the spinal cord. Neurosci Behav Physiol 33:247–254

    PubMed  Google Scholar 

  12. Barthelemy D, Leblond H, Provencher J, Rossignol S (2006) Nonlocomotor and locomotor hindlimb responses evoked by electrical microstimulation of the lumbar cord in spinalized cats. J Neurophysiol 96:3273–3292

    PubMed  Google Scholar 

  13. Barthelemy D, Leblond H, Rossignol S (2007) Characteristics and mechanisms of locomotion induced by intraspinal microstimulation and dorsal root stimulation in spinal cats. J Neurophysiol 97:1986–2000

    PubMed  CAS  Google Scholar 

  14. Musienko PE, Bogacheva IN, Gerasimenko YP (2007) Significance of peripheral feedback in the generation of stepping movements during epidural stimulation of the spinal cord. Neurosci Behav Physiol 37:181–190

    PubMed  CAS  Google Scholar 

  15. Mori S, Matsui T, Kuze B, Asanome M, Nakajima K, Matsuyama K (1999) Stimulation of a restricted region in the midline cerebellar white matter evokes coordinated quadrupedal locomotion in the decerebrate cat. J Neurophysiol 82:290–300

    PubMed  CAS  Google Scholar 

  16. Matsuyama K, Mori F, Nakajima K, Drew T, Aoki M, Mori S (2004) Locomotor role of the corticoreticular-reticulospinal-spinal interneuronal system. Prog Brain Res 143:239–249

    PubMed  Google Scholar 

  17. Hultborn H, Malmsten J (1983) Changes in segmental reflexes following chronic spinal cord hemisection in the cat. I. Increased monosynaptic and polysynaptic ventral root discharges. Acta Physiol Scand 119:405–422

    PubMed  CAS  Google Scholar 

  18. Hultborn H, Malmsten J (1983) Changes in segmental reflexes following chronic spinal cord hemisection in the cat. II. Conditioned monosynaptic test reflexes. Acta Physiol Scand 119:423–433

    PubMed  CAS  Google Scholar 

  19. Donelan JM, Pearson KG (2004) Contribution of force feedback to ankle extensor activity in decerebrate walking cats. J Neurophysiol 92:2093–2104

    PubMed  CAS  Google Scholar 

  20. Donelan JM, Pearson KG (2004) Contribution of sensory feedback to ongoing ankle extensor activity during the stance phase of walking. Can J Physiol Pharmacol 82:589–598

    PubMed  CAS  Google Scholar 

  21. Armstrong DM (1986) Supraspinal contributions to the initiation and control of locomotion in the cat. Prog Neurobiol 26:273–361

    PubMed  CAS  Google Scholar 

  22. Jordan LM, Liu J, Hedlund PB, Akay T, Pearson KG (2008) Descending command systems for the initiation of locomotion in mammals. Brain Res Rev 57:183–191

    PubMed  CAS  Google Scholar 

  23. Duysens J, Pearson KG (1980) Inhibition of flexor burst generation by loading ankle extensor muscles in walking cats. Brain Res 187:321–332

    PubMed  CAS  Google Scholar 

  24. Pearson KG (2008) Role of sensory feedback in the control of stance duration in walking cats. Brain Res Rev 57:222–227

    PubMed  CAS  Google Scholar 

  25. Grillner S, Zangger P (1979) On the central generation of locomotion in the low spinal cat. Exp Brain Res 34:241–261

    PubMed  CAS  Google Scholar 

  26. Rossignol S, Dubuc R, Gossard JP (2006) Dynamic sensorimotor interactions in locomotion. Physiol Rev 86:89–154

    PubMed  Google Scholar 

  27. Eccles JC, Eccles RM, Lundberg A (1957) The convergence of monosynaptic excitatory afferents on to many different species of alpha motoneurones. J Physiol 137:22–50

    PubMed  CAS  Google Scholar 

  28. Jankowska E (1992) Interneuronal relay in spinal pathways from proprioceptors. Prog Neurobiol 38:335–378

    PubMed  CAS  Google Scholar 

  29. Jankowska E, Maxwell DJ, Bannatyne BA (2007) On coupling and decoupling of spinal interneuronal networks. Arch Ital Biol 145:235–250

    PubMed  CAS  Google Scholar 

  30. Petras JM (1967) Cortical, tectal and segmental fiber connections in the spinal cord of the cat. Brain Res 6:275–324

    PubMed  CAS  Google Scholar 

  31. Holstege JC, Kuypers HGJM (1987) Brainstem projections to spinal motoneurons: an update. Neuroscience 23:809–821

    PubMed  CAS  Google Scholar 

  32. Forssberg H, Grillner S (1973) The locomotion of the acute spinal cat injected with clonidine i.v. Brain Res 50:184–186

    PubMed  CAS  Google Scholar 

  33. Forssberg H, Grillner S, Halbertsma J (1980) The locomotion of the low spinal cat. I. Coordination within a hindlimb. Acta Physiol Scand 108:269–281

    PubMed  CAS  Google Scholar 

  34. Forssberg H, Grillner S, Halbertsma J, Rossignol S (1980) The locomotion of the low spinal cat: II. Interlimb coordination. Acta Physiol Scand 108:283–295

    PubMed  CAS  Google Scholar 

  35. Robinson GA, Goldberger ME (1986) The development and recovery of motor function in spinal cats. I. The infant lesion effect. Exp Brain Res 62:373–386

    PubMed  CAS  Google Scholar 

  36. Robinson GA, Goldberger ME (1986) The development and recovery of motor function in spinal cats. II. Pharmacological enhancement of recovery. Exp Brain Res 62:387–400

    PubMed  CAS  Google Scholar 

  37. Howland DR, Bregman BS, Tessler A, Goldberger ME (1995) Development of locomotor behavior in the spinal kitten. Exp Neurol 135:108–122

    PubMed  CAS  Google Scholar 

  38. Lovely RG, Gregor RJ, Roy RR, Edgerton VR (1986) Effects of training on the recovery of full-weight-bearing stepping in the adult spinal cat. Exp Neurol 92:421–435

    PubMed  CAS  Google Scholar 

  39. Carter MC, Smith JL (1986) Simultaneous control of two rhythmical behaviors. II. Hindlimb walking with paw-shake response in spinal cat. J Neurophysiol 56:184–195

    PubMed  CAS  Google Scholar 

  40. Barbeau H, Julien C, Rossignol S (1987) The effects of clonidine and yohimbine on locomotion and cutaneous reflexes in the adult chronic spinal cat. Brain Res 437:83–96

    PubMed  CAS  Google Scholar 

  41. Barbeau H, Rossignol S (1987) Recovery of locomotion after chronic spinalization in the adult cat. Brain Res 412:84–95

    PubMed  CAS  Google Scholar 

  42. Lovely RG, Gregor RJ, Roy RR, Edgerton VR (1990) Weight-bearing hindlimb stepping in treadmill-exercised adult spinal cat. Brain Res 514:206–218

    PubMed  CAS  Google Scholar 

  43. Barbeau H, Rossignol S (1990) The effects of serotonergic drugs on the locomotor pattern and on cutaneous reflexes of the adult chronic spinal cat. Brain Res 514:55–67

    PubMed  CAS  Google Scholar 

  44. Barbeau H, Rossignol S (1991) Initiation and modulation of the locomotor pattern in the adult chronic spinal cat by noradrenergic, serotonergic and dopaminergic drugs. Brain Res 546:250–260

    PubMed  CAS  Google Scholar 

  45. de Guzman CP, Roy RR, Hodgson JA, Edgerton VR (1991) Coordination of motor pools controlling the ankle musculature in adult spinal cats during treadmill walking. Brain Res 555:202–214

    PubMed  Google Scholar 

  46. Barbeau H, Chau C, Rossignol S (1993) Noradrenergic agonists and locomotor training affect locomotor recovery after cord transection in adult cats. Brain Res Bull 30:387–393

    PubMed  CAS  Google Scholar 

  47. Bélanger M, Drew T, Provencher J, Rossignol S (1996) A comparison of treadmill locomotion in adult cats before and after spinal transection. J Neurophysiol 76:471–491

    PubMed  Google Scholar 

  48. de Leon RD, Hodgson JA, Roy RR, Edgerton VR (1998) Locomotor capacity attributable to step training versus spontaneous recovery after spinalization in adult cats. J Neurophysiol 79:1329–1340

    PubMed  Google Scholar 

  49. Chau C, Barbeau H, Rossignol S (1998) Early locomotor training with clonidine in spinal cats. J Neurophysiol 79:392–409

    PubMed  CAS  Google Scholar 

  50. de Leon RD, Tamaki H, Hodgson JA, Roy RR, Edgerton VR (1999) Hindlimb locomotor and postural training modulates glycinergic inhibition in the spinal cord of the adult spinal cat. J Neurophysiol 82:359–369

    PubMed  Google Scholar 

  51. Bouyer LJG, Whelan P, Pearson KG, Rossignol S (2001) Adaptive locomotor plasticity in chronic spinal cats after ankle extensors neurectomy. J Neurosci 21:3531–3541

    PubMed  CAS  Google Scholar 

  52. Giroux N, Chau C, Barbeau H, Reader TA, Rossignol S (2003) Effects of intrathecal glutamatergic drugs on locomotion. II. NMDA and AP-5 in intact and late spinal cats. J Neurophysiol 90:1027–1045

    PubMed  CAS  Google Scholar 

  53. Bouyer LJG, Rossignol S (2003) Contribution of cutaneous inputs from the hindpaw to the control of locomotion: 2. Spinal cats. J Neurophysiol 90:3640–3653

    PubMed  CAS  Google Scholar 

  54. Frigon A, Rossignol S (2008) Adaptive changes of the locomotor pattern and cutaneous reflexes during locomotion studied in the same cats before and after spinalization. J Physiol 586:2927–2945

    PubMed  CAS  Google Scholar 

  55. Frigon A, Rossignol S (2008) Locomotor and reflex adaptation after partial denervation of ankle extensors in chronic spinal cats. J Neurophysiol 100:1513–1522

    PubMed  Google Scholar 

  56. Frigon A, Rossignol S (2009) Partial denervation of ankle extensors prior to spinalization in cats impacts the expression of locomotion and the phasic modulation of reflexes. Neuroscience 158:1675–1690

    PubMed  CAS  Google Scholar 

  57. English AW (1980) Interlimb coordination during stepping in the cat: effects of dorsal column section. J Neurophysiol 44:270–279

    PubMed  CAS  Google Scholar 

  58. English AW (1985) Interlimb coordination during stepping in the cat. The role of the dorsal spinocerebellar tract. Exp Neurol 87:96–108

    PubMed  CAS  Google Scholar 

  59. Zmyslowski W, Gorska T, Majczynski H, Bem T (1993) Hindlimb muscle activity during unrestrained walking in cats with lesions of the lateral funiculi. Acta Neurobiol Exp 53:143–153

    CAS  Google Scholar 

  60. Gorska T, Majczynski H, Bem T, Zmyslowski W (1993) Hindlimb swing, stance and step relationships during unrestrained walking in cats with lateral funicular lesion. Acta Neurobiol Exp 53:133–142

    CAS  Google Scholar 

  61. Jiang W, Drew T (1996) Effects of bilateral lesions of the dorsolateral funiculi and dorsal columns at the level of the low thoracic spinal cord on the control of locomotion in the adult cat: I. Treadmill walking. J Neurophysiol 76:849–866

    PubMed  CAS  Google Scholar 

  62. Gorska T, Bem T, Majczynski H (1990) Locomotion in cats with ventral spinal lesions: support patterns and duration of support phases during unrestrained walking. Acta Neurobiol Exp 50:191–200

    CAS  Google Scholar 

  63. Gorska T, Bem T, Majczynski H, Zmyslowski W (1993) Unrestrained walking in cats with partial spinal lesions. Brain Res Bull 32:241–249

    PubMed  CAS  Google Scholar 

  64. Bem T, Gorska T, Majczynski H, Zmyslowski W (1995) Different patterns of fore-hindlimb coordination during overground locomotion in cats with ventral and lateral spinal lesions. Exp Brain Res 104:70–80

    PubMed  CAS  Google Scholar 

  65. Brustein E, Rossignol S (1998) Recovery of locomotion after ventral and ventrolateral spinal lesions in the cat. I. Deficits and adaptive mechanisms. J Neurophysiol 80:1245–1267

    PubMed  CAS  Google Scholar 

  66. Brustein E, Rossignol S (1999) Recovery of locomotion after ventral and ventrolateral spinal lesions in the cat. II. Effects of noradrenergic and serotoninergic drugs. J Neurophysiol 81:1513–1530

    PubMed  CAS  Google Scholar 

  67. Murray M, Goldberger ME (1974) Restitution of function and collateral sprouting in the cat spinal cord: the partially hemisected animal. J Comp Neurol 158:19–36

    PubMed  CAS  Google Scholar 

  68. Bregman BS, Goldberger ME (1983) Infant lesion effect: I. Development of motor behavior following neonatal spinal cord damage in cats. Brain Res 9:103–117

    Google Scholar 

  69. Kato M, Murakami S, Yasuda K, Hirayama H, Hikino K (1983) Increase of extensor tonus of forelimbs in chronic cats with bilateral serial hemisections of the spinal cord at different levels. Neurosci Lett 41:289–293

    PubMed  CAS  Google Scholar 

  70. Kato M, Murakami S, Yasuda K, Hirayama H (1984) Disruption of fore-and hindlimb coordination during overground locomotion in cats with bilateral serial hemisection of the spinal cord. Neurosci Res 2:27–47

    PubMed  CAS  Google Scholar 

  71. Kato M, Murakami S, Hirayama H, Hikino K (1985) Recovery of postural control following chronic bilateral hemisections at different spinal cord levels in adult cats. Exp Neurol 90:350–364

    PubMed  CAS  Google Scholar 

  72. Eidelberg E, Nguyen LH, Deza LD (1986) Recovery of locomotor function after hemisection of the spinal cord in cats. Brain Res Bull 16:507–515

    PubMed  CAS  Google Scholar 

  73. Kato M (1989) Chronically isolated lumbar half spinal cord produced by hemisection and longitudinal myelotomy generates locomotor activities of the ipsilateral hindlimb of the cat. Neurosci Lett 98:149–153

    PubMed  CAS  Google Scholar 

  74. Kato M (1990) Chronically isolated lumbar half spinal cord generates locomotor activities in the ipsilateral hindlimb of the cat. Neurosci Res 9(1):22–34

    PubMed  CAS  Google Scholar 

  75. Helgren ME, Goldberger ME (1993) The recovery of postural reflexes and locomotion following low thoracic hemisection in adult cats involves compensation by undamaged primary afferent pathways. Exp Neurol 123:17–34

    PubMed  CAS  Google Scholar 

  76. Kuhtz-Buschbeck JP, Boczek-Funcke A, Mautes A, Nacimiento W, Weinhardt C (1996) Recovery of locomotion after spinal cord hemisection: an X-ray study of the cat hindlimb. Exp Neurol 137:212–224

    PubMed  CAS  Google Scholar 

  77. Tester NJ, Howland DR (2008) Chondroitinase ABC improves basic and skilled locomotion in spinal cord injured cats. Exp Neurol 209:483–496

    PubMed  CAS  Google Scholar 

  78. Barriere G, Leblond H, Provencher J, Rossignol S (2008) Prominent role of the spinal central pattern generator in the recovery of locomotion after partial spinal cord injuries. J Neurosci 28:3976–3987

    PubMed  CAS  Google Scholar 

  79. Frigon A, Barriere G, Leblond H, Rossignol S (2009) Asymmetric changes in cutaneous reflexes after a partial spinal lesion and retention following spinalization during locomotion in the cat. J Neurophysiol 102:2667–2680

    PubMed  Google Scholar 

  80. Barriere G, Frigon A, Leblond H, Provencher J, Rossignol S (2010) Dual spinal lesion paradigm in the cat: evolution of the kinematic locomotor pattern. J Neurophysiol 104(2):1119–1133

    PubMed  Google Scholar 

  81. Brown TG (1911) The intrinsic factors in the act of progression in the mammal. Proc Roy Soc Lond B 84:308–319

    Google Scholar 

  82. Heckmann CJ, Gorassini MA, Bennett DJ (2005) Persistent inward currents in motoneuron dendrites: implications for motor output. Muscle Nerve 31:135–156

    PubMed  CAS  Google Scholar 

  83. Stuart DG, Hultborn H (2008) Thomas Graham Brown (1882–1965), Anders Lundberg (1920-), and the neural control of stepping. Brain Res Rev 59:74–95

    PubMed  Google Scholar 

  84. Sherrington CS (1910) Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. J Physiol 40:28–121

    PubMed  CAS  Google Scholar 

  85. Anden NE, Jukes MGM, Lundberg A (1966) The effect of DOPA on the spinal cord. 2. A pharmacological analysis. Acta Physiol Scand 67:387–397

    PubMed  CAS  Google Scholar 

  86. Jankowska E, Jukes MGM, Lund S, Lundberg A (1967) The effect of DOPA on the spinal cord. 5. Reciprocal organization of pathways transmitting excitatory action to alpha motoneurones of flexors and extensors. Acta Physiol Scand 70:369–388

    PubMed  CAS  Google Scholar 

  87. Jankowska E, Jukes MGM, Lund S, Lundberg A (1967) The effects of DOPA on the spinal cord. 6. Half centre organization of interneurones transmitting effects from the flexor reflex afferents. Acta Physiol Scand 70:389–402

    PubMed  CAS  Google Scholar 

  88. Lundberg A (1981) Half-centres revisited. In: Szentagothai J, Palkovits M, Hamori J (eds) Regulatory functions of the CNS. Principles of motion and organization, vol 1, Advances in physiological science. Pergamon Press, Budapest, pp 155–167

    Google Scholar 

  89. Dimitrijevic MR, Gerasimenko Y, Pinter MM (1998) Evidence for a spinal central pattern generator in humans. Ann N Y Acad Sci 860:360–376

    PubMed  CAS  Google Scholar 

  90. Duysens J, Van de Crommert HW (1998) Neural control of locomotion; the central pattern generator from cats to humans. Gait Posture 7:131–141

    PubMed  Google Scholar 

  91. MacKay-Lyons M (2002) Central pattern generation of locomotion: a review of the evidence. Phys Ther 82:69–83

    PubMed  Google Scholar 

  92. Rossignol S, Bouyer L, Barthélemy D, Langlet C, Leblond H (2002) Recovery of locomotion in the cat following spinal cord lesions. Brain Res Rev 40:257–266

    PubMed  CAS  Google Scholar 

  93. Grillner S (1981) Control of locomotion in bipeds, tetrapods, and fish. In: Brookhart JM, Mountcastle VB (eds) Handbook of physiology. The nervous system II. American Physiological Society, Bethesda, MD, pp 1179–1236

    Google Scholar 

  94. Perret C (1983) Centrally generated pattern of motoneuron activity during locomotion in the cat. In: Roberts A, Roberts BL (eds) Neural origin of rhythmic movements, vol 37, Society for experimental biology symposium. Cambridge University Press, Cambridge, pp 405–422

    Google Scholar 

  95. Rybak IA, Shevtsova NA, Lafreniere-Roula M, McCrea DA (2006) Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion. J Physiol 577:617–639

    PubMed  CAS  Google Scholar 

  96. Rybak IA, Stecina K, Shevtsova NA, McCrea DA (2006) Modelling spinal circuitry involved in locomotor pattern generation: insights from the effects of afferent stimulation. J Physiol 577:641–658

    PubMed  CAS  Google Scholar 

  97. McCrea DA, Rybak IA (2008) Organization of mammalian locomotor rhythm and pattern generation. Brain Res Rev 57:134–146

    PubMed  Google Scholar 

  98. Edgerton VR, Leon RD, Harkema SJ, Hodgson JA, London N, Reinkensmeyer DJ, Roy RR, Talmadge RJ, Tillakaratne NJ, Timoszyk W, Tobin A (2001) Retraining the injured spinal cord. J Physiol 533:15–22

    PubMed  CAS  Google Scholar 

  99. Harkema SJ (2001) Neural plasticity after human spinal cord injury: application of locomotor training to the rehabilitation of walking. Neuroscientist 7:455–468

    PubMed  CAS  Google Scholar 

  100. de Leon RD, Hodgson JA, Roy RR, Edgerton VR (1999) Retention of hindlimb stepping ability in adult spinal cats after the cessation of step training. J Neurophysiol 81:85–94

    PubMed  Google Scholar 

  101. Carrier L, Brustein L, Rossignol S (1997) Locomotion of the hindlimbs after neurectomy of ankle flexors in intact and spinal cats: model for the study of locomotor plasticity. J Neurophysiol 77:1979–1993

    PubMed  CAS  Google Scholar 

  102. Goldberger ME (1977) Locomotor recovery after unilateral hindlimb deafferentation in cats. Brain Res 123:59–74

    PubMed  CAS  Google Scholar 

  103. Grillner S, Rossignol S (1978) On the initiation of the swing phase of locomotion in chronic spinal cats. Brain Res 146:269–277

    PubMed  CAS  Google Scholar 

  104. Andersson O, Forssberg H, Grillner S, Wallén P (1981) Peripheral feedback mechanisms acting on the central pattern generators for locomotion in fish and cat. Can J Physiol Pharmacol 59:713–26

    Google Scholar 

  105. Andersson O, Grillner S (1981) Peripheral control of the cat’s step cycle. I. Phase dependent effects of ramp-movements of the hip during “fictive locomotion”. Acta Physiol Scand 113:89–101

    PubMed  CAS  Google Scholar 

  106. Andersson O, Grillner S (1983) Peripheral control of the cat’s step cycle. II. Entrainment of the central pattern generators for locomotion by sinusoidal hip movements during “fictive locomotion”. Acta Physiol Scand 118:229–239

    PubMed  CAS  Google Scholar 

  107. Conway BA, Hultborn H, Kiehn O (1987) Proprioceptive input resets central locomotor rhythm in the spinal cat. Exp Brain Res 68:643–656

    PubMed  CAS  Google Scholar 

  108. Kriellaars DJ, Brownstone RM, Noga BR, Jordan LM (1994) Mechanical entrainment of fictive locomotion in the decerebrate cat. J Neurophysiol 71:2074–2086

    PubMed  CAS  Google Scholar 

  109. Guertin P, Angel MJ, Perreault M-C, McCrea DA (1995) Ankle extensor group I afferents excite extensors throughout the hindlimb during fictive locomotion in the cat. J Physiol 487:197–209

    PubMed  CAS  Google Scholar 

  110. Perreault M-C, Angel MJ, Guertin P, McCrea DA (1995) Effects of stimulation of hindlimb flexor group II afferents during fictive locomotion in the cat. J Physiol 487:211–220

    PubMed  CAS  Google Scholar 

  111. Stecina K, Quevedo J, McCrea DA (2005) Parallel reflex pathways from flexor muscle afferents evoking resetting and flexion enhancement during fictive locomotion and scratch in the cat. J Physiol 569:275–290

    PubMed  CAS  Google Scholar 

  112. Frigon A, Sirois J, Gossard J-P (2010) The effects of ankle and hip muscle afferent inputs on rhythm generation during fictive locomotion. J Neurophysiol 103:1591–1605

    PubMed  Google Scholar 

  113. Pearson KG, Ramirez JM, Jiang W (1992) Entrainment of the locomotor rhythm by group Ib afferents from ankle extensor muscles in spinal cats. Exp Brain Res 90:557–566

    PubMed  CAS  Google Scholar 

  114. Whelan PJ, Hiebert GW, Pearson KG (1995) Stimulation of the group I extensor afferents prolongs the stance phase in walking cats. Exp Brain Res 103:20–30

    PubMed  CAS  Google Scholar 

  115. Hiebert GW, Whelan PJ, Prochazka A, Pearson KG (1996) Contribution of hind limb flexor muscle afferents to the timing of phase transitions in the cat step cycle. J Neurophysiol 75:1126–1137

    PubMed  CAS  Google Scholar 

  116. Whelan PJ, Pearson KG (1997) Comparison of the effects of stimulating extensor group I afferents on cycle period during walking in conscious and decerebrate cats. Exp Brain Res 117:444–452

    PubMed  CAS  Google Scholar 

  117. Lam T, Pearson KG (2001) Proprioceptive modulation of hip flexor activity during the swing phase of locomotion in decerebrate cats. J Neurophysiol 86:1321–1332

    PubMed  CAS  Google Scholar 

  118. Lam T, Pearson KG (2002) Sartorius muscle afferents influence the amplitude and timing of flexor activity in walking decerebrate cats. Exp Brain Res 147:175–185

    PubMed  Google Scholar 

  119. Duysens J, Clarac F, Cruse H (2000) Load-regulating mechanisms in gait and posture: comparative aspects. Physiol Rev 80:83–133

    PubMed  CAS  Google Scholar 

  120. af Klint R, Cronin NJ, Ishikawa M, Sinkjaer T, Grey MJ (2010) Afferent contribution to locomotor muscle activity during unconstrained overground human walking: an analysis of triceps surae muscle fascicles. J Neurophysiol 103:1262–1274

    PubMed  CAS  Google Scholar 

  121. af Klint R, Mazzaro N, Nielsen JB, Sinkjaer T, Grey MJ (2010) Load rather than length sensitive feedback contributes to soleus muscle activity during human treadmill walking. J Neurophysiol 103:2747–2756

    PubMed  Google Scholar 

  122. McVea DA, Pearson KG (2007). Long-lasting, context-dependent modification of stepping in the cat after repeated stumbling-corrective responses. J Neurophysiol 97: 659–69

    Google Scholar 

  123. Forssberg H (1979) Stumbling corrective reaction: a phase-dependent compensatory reaction during locomotion. J Neurophysiol 42:936–953

    PubMed  CAS  Google Scholar 

  124. Schillings AM, Van Wezel BMH, Duysens J (1996) Mechanically induced stumbling during human treadmill walking. J Neurosci Methods 67:11–17

    PubMed  CAS  Google Scholar 

  125. Zehr EP, Stein RB (1999) What functions do reflexes serve during human locomotion? Prog Neurobiol 58:185–205

    PubMed  CAS  Google Scholar 

  126. Lam T, Wolstenholme C, van der Linden M, Pang MY, Yang JF (2003) Stumbling corrective responses during treadmill-elicited stepping in human infants. J Physiol 553:319–331

    PubMed  CAS  Google Scholar 

  127. Bouyer LJG, Rossignol S (2003) Contribution of cutaneous inputs from the hindpaw to the control of locomotion: 1. Intact cats. J Neurophysiol 90:3625–3639

    PubMed  CAS  Google Scholar 

  128. Heckman CJ, Lee RH, Brownstone RM (2003) Hyperexcitable dendrites in motoneurons and their neuromodulatory control during motor behavior. Trends Neurosci 26:688–695

    PubMed  CAS  Google Scholar 

  129. Naftchi NE (1982) Functional restoration of the traumatically injured spinal cord in cats by clonidine. Science 217:1042–1044

    PubMed  CAS  Google Scholar 

  130. Heckman CJ, Hyngstrom AS, Johnson MD (2008) Active properties of motoneurone dendrites: diffuse descending neuromodulation, focused local inhibition. J Physiol 586:1225–1231

    PubMed  CAS  Google Scholar 

  131. Heckman CJ, Mottram C, Quinlan K, Theiss R, Schuster J (2009) Motoneuron excitability: the importance of neuromodulatory inputs. Clin Neurophysiol 120:2040–2054

    PubMed  CAS  Google Scholar 

  132. Chau C, Barbeau H, Rossignol S (1998) Effects of intrathecal a1- and a2-noradrenergic agonists and norepinephrine on locomotion in chronic spinal cats. J Neurophysiol 79:2941–2963

    PubMed  CAS  Google Scholar 

  133. Giroux N, Reader TA, Rossignol S (2001) Comparison of the effect of intrathecal administration of clonidine and yohimbine on the locomotion of intact and spinal cats. J Neurophysiol 85:2516–2536

    PubMed  CAS  Google Scholar 

  134. Chau C, Giroux N, Barbeau H, Jordan LM, Rossignol S (2002) Effects of intrathecal glutamatergic drugs on locomotion. I. NMDA in short-term spinal cats. J Neurophysiol 88:3032–3045

    PubMed  CAS  Google Scholar 

  135. Tillakaratne NJ, Mouria M, Ziv NB, Roy RR, Edgerton VR, Tobin AJ (2000) Increased expression of glutamate decarboxylase (GAD(67)) in feline lumbar spinal cord after complete thoracic spinal cord transection. J Neurosci Res 60:219–230

    PubMed  CAS  Google Scholar 

  136. Tillakaratne NJ, de Leon RD, Hoang TX, Roy RR, Edgerton VR, Tobin AJ (2002) Use-dependent modulation of inhibitory capacity in the feline lumbar spinal cord. J Neurosci 22:3130–3143

    PubMed  CAS  Google Scholar 

  137. Dietz V, Colombo G, Jensen L, Baumgartner L (1995) Locomotor capacity of spinal cord in paraplegic patients. Ann Neurol 37:574–582

    PubMed  CAS  Google Scholar 

  138. Remy-Neris O, Barbeau H, Daniel O, Boiteau F, Bussel B (1999) Effects of intrathecal clonidine injection on spinal reflexes and human locomotion in incomplete paraplegic subjects. Exp Brain Res 129:433–440

    PubMed  CAS  Google Scholar 

  139. Schwindt PC, Crill WE (1980) Properties of a persistent inward current in normal and TEA-injected motoneurons. J Neurophysiol 43:1700–1724

    PubMed  CAS  Google Scholar 

  140. Hultborn H (2003) Changes in neuronal properties and spinal reflexes during development of spasticity following spinal cord lesions and stroke: studies in animal models and patients. J Rehabil Med 41 Suppl: 46–55

    Google Scholar 

  141. Murray KC, Nakae A, Stephens MJ, Rank M, D’Amico J, Harvey PJ et al (2010) Recovery of motoneuron and locomotor function after spinal cord injury depends on constitutive activity in 5-HT2C receptors. Nat Med 16:694–700

    PubMed  CAS  Google Scholar 

  142. Courtine G, Song B, Roy RR, Zhong H, Herrmann JE, Ao Y et al (2008) Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat Med 14:69–74

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Frigon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Frigon, A. (2013). The Cat Model of Spinal Cord Injury. In: Aldskogius, H. (eds) Animal Models of Spinal Cord Repair. Neuromethods, vol 76. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-197-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-197-4_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-196-7

  • Online ISBN: 978-1-62703-197-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics