Skip to main content

Magnetic Resonance Imaging of Experimental Spinal Cord Injury

  • Protocol
  • First Online:
  • 921 Accesses

Part of the book series: Neuromethods ((NM,volume 76))

Abstract

Magnetic resonance imaging (MRI) is a valuable in vivo imaging method for investigating experimental spinal cord injury (SCI). In this chapter a variety of MRI techniques will be described including anatomical, functional, and cellular MRI. The benefits and challenges of each technique are addressed and examples of the application of these imaging tools are presented for mouse and rat SCI.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ma M, Basso DM, Walters P, Stokes BT, Jakeman LB (2001) Behavioral and histological outcomes following graded spinal cord contusion injury in the C57Bl/6 mouse. Exp Neurol 169(2):239–254

    Article  PubMed  CAS  Google Scholar 

  2. Joshi M, Fehlings MG (2002) Development and characterization of a novel, graded model of clip compressive spinal cord injury in the mouse: Part 1. Clip design, behavioral outcomes, and histopathology. J Neurotrauma 19(2):175–190

    Article  PubMed  Google Scholar 

  3. Siegenthaler MM, Tu MK, Keirstead HS (2007) The extent of myelin pathology differs following contusion and transection spinal cord injury. J Neurotrauma 24(10):1631–1646

    Article  PubMed  Google Scholar 

  4. Jacob JE, Pniak A, Weaver LC, Brown A (2001) Autonomic dysreflexia in a mouse model of spinal cord injury. Neuroscience 108(4):687–693

    Article  PubMed  CAS  Google Scholar 

  5. Onifer SM, Rabchevsky AG, Scheff SW (2007) Rat models of traumatic spinal cord injury to assess motor recovery. ILAR J 48(4):385–395

    PubMed  CAS  Google Scholar 

  6. Fleming JC, Norenberg MD, Ramsay DA, Dekaban GA, Marcillo AE, Saenz AD et al (2006) The cellular inflammatory response in human spinal cords after injury. Brain 129(Pt 12):3249–3269

    Article  PubMed  Google Scholar 

  7. Inman DM, Steward O (2003) Physical size does not determine the unique histopathological response seen in the injured mouse spinal cord. J Neurotrauma 20(1):33–42

    Article  PubMed  Google Scholar 

  8. Guertin PA (2005) Paraplegic mice are leading to new advances in spinal cord injury research. Spinal Cord 43(8):459–461

    Article  PubMed  CAS  Google Scholar 

  9. Johnson GA, Cofer GP, Gewalt SL, Hedlund LW (2002) Morphologic phenotyping with MR microscopy: the visible mouse. Radiology 222(3):789–793

    Article  PubMed  Google Scholar 

  10. Blight AR (2002) Miracles and molecules–progress in spinal cord repair. Nat Neurosci 5(Suppl):1051–1054

    Article  PubMed  CAS  Google Scholar 

  11. Ohta K, Fujimura Y, Nakamura M, Watanabe M, Yato Y (1999) Experimental study on MRI evaluation of the course of cervical spinal cord injury. Spinal Cord 37(8):580–584

    Article  PubMed  CAS  Google Scholar 

  12. Mihai G, Nout YS, Tovar CA, Miller BA, Schmalbrock P, Bresnahan JC et al (2008) Longitudinal comparison of two severities of unilateral cervical spinal cord injury using magnetic resonance imaging in rats. J Neurotrauma 25(1):1–18

    Article  PubMed  Google Scholar 

  13. Bilgen M, Rumboldt Z (2008) Neuronal and vascular biomarkers in syringomyelia: investigations using longitudinal MRI. Biomark Med 2(2):113–124

    Article  PubMed  Google Scholar 

  14. Narayana PA, Grill RJ, Chacko T, Vang R (2004) Endogenous recovery of injured spinal cord: longitudinal in vivo magnetic resonance imaging. J Neurosci Res 78(5):749–759

    Article  PubMed  CAS  Google Scholar 

  15. Weber T, Vroemen M, Behr V, Neuberger T, Jakob P, Haase A et al (2006) In vivo high-resolution MR imaging of neuropathologic changes in the injured rat spinal cord. AJNR Am J Neuroradiol 27(3):598–604

    PubMed  CAS  Google Scholar 

  16. Brown A, Jacob JE (2006) Genetic approaches to autonomic dysreflexia. Prog Brain Res 152:299–313

    Article  PubMed  CAS  Google Scholar 

  17. Sroga JM, Jones TB, Kigerl KA, McGaughy VM, Popovich PG (2003) Rats and mice exhibit distinct inflammatory reactions after spinal cord injury. J Comp Neurol 462(2):223–240

    Article  PubMed  Google Scholar 

  18. Bilgen M, Al-Hafez B, Alrefae T, He YY, Smirnova IV, Aldur MM et al (2007) Longitudinal magnetic resonance imaging of spinal cord injury in mouse: changes in signal patterns associated with the inflammatory response. Magn Reson Imaging 25(5):657–664

    Article  PubMed  Google Scholar 

  19. Byrnes KR, Fricke ST, Faden AI (2010) Neuropathological differences between rats and mice after spinal cord injury. J Magn Reson Imaging 32(4):836–846

    Article  PubMed  Google Scholar 

  20. Gonzalez-Lara LE, Xu X, Hofstetrova K, Pniak A, Brown A, Foster PJ (2009) In vivo magnetic resonance imaging of spinal cord injury in the mouse. J Neurotrauma 26(5):753–762

    Article  PubMed  Google Scholar 

  21. Brodbelt AR, Stoodley MA (2003) Post-traumatic syringomyelia: a review. J Clin Neurosci 10(4):401–408

    Article  PubMed  CAS  Google Scholar 

  22. Sandner B, Pillai DR, Heidemann RM, Schuierer G, Mueller MF, Bogdahn U et al (2009) In vivo high-resolution imaging of the injured rat spinal cord using a 3.0 T clinical MR scanner. J Magn Reson Imaging 29(3):725–730

    Article  PubMed  Google Scholar 

  23. Pillai DR, Heidemann RM, Kumar P, Shanbhag N, Lanz T, Dittmar MS et al (2011) Comprehensive small animal imaging strategies on a clinical 3 T dedicated head MR-scanner; adapted methods and sequence protocols in CNS pathologies. PLoS One 6(2):e16091

    Article  PubMed  CAS  Google Scholar 

  24. Henkelman RM, Stanisz GJ, Graham SJ (2001) Magnetization transfer in MRI: a review. NMR Biomed 14(2):57–64

    Article  PubMed  CAS  Google Scholar 

  25. Wolff SD, Balaban RS (1989) Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med 10(1):135–144

    Article  PubMed  CAS  Google Scholar 

  26. Levesque IR, Giacomini PS, Narayanan S, Ribeiro LT, Sled JG, Arnold DL et al (2010) Quantitative magnetization transfer and myelin water imaging of the evolution of acute multiple sclerosis lesions. Magn Reson Med 63(3):633–640

    Article  PubMed  Google Scholar 

  27. Harel A, Eliav U, Akselrod S, Navon G (2008) Magnetization transfer based contrast for imaging denatured collagen. J Magn Reson Imaging 27(5):1155–1163

    Article  PubMed  Google Scholar 

  28. Rausch M, Hiestand P, Baumann D, Cannet C, Rudin M (2003) MRI-based monitoring of inflammation and tissue damage in acute and chronic relapsing EAE. Magn Reson Med 50(2):309–314

    Article  PubMed  CAS  Google Scholar 

  29. Schmierer K, Scaravilli F, Altmann DR, Barker GJ, Miller DH (2004) Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann Neurol 56(3):407–415

    Article  PubMed  Google Scholar 

  30. Chen JT, Kuhlmann T, Jansen GH, Collins DL, Atkins HL, Freedman MS et al (2007) Voxel-based analysis of the evolution of magnetization transfer ratio to quantify remyelination and demyelination with histopathological validation in a multiple sclerosis lesion. Neuroimage 36(4):1152–1158

    Article  PubMed  CAS  Google Scholar 

  31. Franconi F, Lemaire L, Marescaux L, Jallet P, Le Jeune JJ (2000) In vivo quantitative microimaging of rat spinal cord at 7 T. Magn Reson Med 44(6):893–898

    Article  PubMed  CAS  Google Scholar 

  32. McGowan JC, Berman JI, Ford JC, Lavi E, Hackney DB (2000) Characterization of experimental spinal cord injury with magnetization transfer ratio histograms. J Magn Reson Imaging 12(2):247–254

    Article  PubMed  CAS  Google Scholar 

  33. Gareau PJ, Weaver LC, Dekaban GA (2001) In vivo magnetization transfer measurements of experimental spinal cord injury in the rat. Magn Reson Med 45(1):159–163

    Article  PubMed  CAS  Google Scholar 

  34. Ogawa S, Menon RS, Kim SG, Ugurbil K (1998) On the characteristics of functional magnetic resonance imaging of the brain. Annu Rev Biophys Biomol Struct 27:447–474

    Article  PubMed  CAS  Google Scholar 

  35. Yoshizawa T, Nose T, Moore GJ, Sillerud LO (1996) Functional magnetic resonance imaging of motor activation in the human cervical spinal cord. Neuroimage 4(3 Pt 1):174–182

    Article  PubMed  CAS  Google Scholar 

  36. Madi S, Flanders AE, Vinitski S, Herbison GJ, Nissanov J (2001) Functional MR imaging of the human cervical spinal cord. AJNR Am J Neuroradiol 22(9):1768–1774

    PubMed  CAS  Google Scholar 

  37. Hyder F, Rothman DL, Shulman RG (2002) Total neuroenergetics support localized brain activity: implications for the interpretation of fMRI. Proc Natl Acad Sci U S A 99(16):10771–10776

    Article  PubMed  CAS  Google Scholar 

  38. Maandag NJ, Coman D, Sanganahalli BG, Herman P, Smith AJ, Blumenfeld H et al (2007) Energetics of neuronal signaling and fMRI activity. Proc Natl Acad Sci U S A 104(51):20546–20551

    Article  PubMed  CAS  Google Scholar 

  39. Lee JG, Smith JJ, Hudetz AG, Hillard CJ, Bosnjak ZJ, Kampine JP (1995) Laser-Doppler measurement of the effects of halothane and isoflurane on the cerebrovascular CO2 response in the rat. Anesth Analg 80(4):696–702

    PubMed  CAS  Google Scholar 

  40. Pawela CP, Biswal BB, Hudetz AG, Schulte ML, Li R, Jones SR et al (2009) A protocol for use of medetomidine anesthesia in rats for extended studies using task-induced BOLD contrast and resting-state functional connectivity. Neuroimage 46(4):1137–1147

    Article  PubMed  Google Scholar 

  41. Weber R, Ramos-Cabrer P, Wiedermann D, van Camp N, Hoehn M (2006) A fully noninvasive and robust experimental protocol for longitudinal fMRI studies in the rat. Neuroimage 29(4):1303–1310

    Article  PubMed  Google Scholar 

  42. Hutchison RM, Mirsattari SM, Jones CK, Gati JS, Leung LS (2010) Functional networks in the anesthetized rat brain revealed by independent component analysis of resting-state FMRI. J Neurophysiol 103(6):3398–3406

    Article  PubMed  Google Scholar 

  43. Stroman PW (2005) Magnetic resonance imaging of neuronal function in the spinal cord: spinal FMRI. Clin Med Res 3(3):146–156

    Article  PubMed  Google Scholar 

  44. Porszasz R, Beckmann N, Bruttel K, Urban L, Rudin M (1997) Signal changes in the spinal cord of the rat after injection of formalin into the hindpaw: characterization using functional magnetic resonance imaging. Proc Natl Acad Sci U S A 94(10):5034–5039

    Article  PubMed  CAS  Google Scholar 

  45. Malisza KL, Stroman PW (2002) Functional imaging of the rat cervical spinal cord. J Magn Reson Imaging 16(5):553–558

    Article  PubMed  Google Scholar 

  46. Ramu J, Bockhorst KH, Mogatadakala KV, Narayana PA (2006) Functional magnetic resonance imaging in rodents: Methodology and application to spinal cord injury. J Neurosci Res 84(6):1235–1244

    Article  PubMed  CAS  Google Scholar 

  47. Endo T, Spenger C, Westman E, Tominaga T, Olson L (2008) Reorganization of sensory processing below the level of spinal cord injury as revealed by fMRI. Exp Neurol 209(1):155–160

    Article  PubMed  Google Scholar 

  48. Ostergaard L (2004) Cerebral perfusion imaging by bolus tracking. Top Magn Reson Imaging 15(1):3–9

    Article  PubMed  Google Scholar 

  49. Paiva FF, Tannus A, Silva AC (2007) Measurement of cerebral perfusion territories using arterial spin labelling. NMR Biomed 20(7):633–642

    Article  PubMed  Google Scholar 

  50. Duhamel G, Callot V, Cozzone PJ, Kober F (2008) Spinal cord blood flow measurement by arterial spin labeling. Magn Reson Med 59(4):846–854

    Article  PubMed  Google Scholar 

  51. Duhamel G, Callot V, Decherchi P, Le Fur Y, Marqueste T, Cozzone PJ et al (2009) Mouse lumbar and cervical spinal cord blood flow measurements by arterial spin labeling: sensitivity optimization and first application. Magn Reson Med 62(2):430–439

    Article  PubMed  Google Scholar 

  52. Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 188(6):1622–1635

    Article  PubMed  Google Scholar 

  53. Hagmann P, Jonasson L, Maeder P, Thiran JP, Wedeen VJ, Meuli R (2006) Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 26(Suppl 1):S205–S223

    Article  PubMed  Google Scholar 

  54. Ellingson BM, Schmit BD, Kurpad SN (2010) Lesion growth and degeneration patterns measured using diffusion tensor 9.4-T magnetic resonance imaging in rat spinal cord injury. J Neurosurg Spine 13(2):181–192

    Article  PubMed  Google Scholar 

  55. Schwartz ED, Duda J, Shumsky JS, Cooper ET, Gee J (2005) Spinal cord diffusion tensor imaging and fiber tracking can identify white matter tract disruption and glial scar orientation following lateral funiculotomy. J Neurotrauma 22(12):1388–1398

    Article  PubMed  Google Scholar 

  56. Cheung MM, Li DT, Hui ES, Fan S, Ding AY, Hu Y et al (2009) In vivo diffusion tensor imaging of chronic spinal cord compression in rat model. Conf Proc IEEE Eng Med Biol Soc 2009:2715–2718

    PubMed  Google Scholar 

  57. Kim JH, Loy DN, Liang HF, Trinkaus K, Schmidt RE, Song SK (2007) Noninvasive diffusion tensor imaging of evolving white matter pathology in a mouse model of acute spinal cord injury. Magn Reson Med 58(2):253–260

    Article  PubMed  Google Scholar 

  58. Sundberg LM, Herrera JJ, Narayana PA (2010) In vivo longitudinal MRI and behavioral studies in experimental spinal cord injury. J Neurotrauma 27(10):1753–1767

    Article  PubMed  Google Scholar 

  59. Tu TW, Kim JH, Wang J, Song SK (2010) Full tensor diffusion imaging is not required to assess the white-matter integrity in mouse contusion spinal cord injury. J Neurotrauma 27(1):253–262

    Article  PubMed  Google Scholar 

  60. Modo M, Hoehn M, Bulte JW (2005) Cellular MR imaging. Mol Imaging 4(3):143–164

    PubMed  Google Scholar 

  61. Wang YX, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11(11):2319–2331

    Article  PubMed  CAS  Google Scholar 

  62. Kim D, Hong KS, Song J (2007) The present status of cell tracking methods in animal models using magnetic resonance imaging technology. Mol Cells 23(2):132–137

    PubMed  CAS  Google Scholar 

  63. Heyn C, Ronald JA, Ramadan SS, Snir JA, Barry AM, MacKenzie LT et al (2006) In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn Reson Med 56(5):1001–1010

    Article  PubMed  Google Scholar 

  64. Oweida AJ, Dunn EA, Karlik SJ, Dekaban GA, Foster PJ (2007) Iron-oxide labeling of hematogenous macrophages in a model of experimental autoimmune encephalomyelitis and the contribution to signal loss in fast imaging employing steady state acquisition (FIESTA) images. J Magn Reson Imaging 26(1):144–151

    Article  PubMed  Google Scholar 

  65. Dousset V, Ballarino L, Delalande C, Coussemacq M, Canioni P, Petry KG et al (1999) Comparison of ultrasmall particles of iron oxide (USPIO)-enhanced T2-weighted, conventional T2-weighted, and gadolinium-enhanced T1-weighted MR images in rats with experimental autoimmune encephalomyelitis. AJNR Am J Neuroradiol 20(2):223–227

    PubMed  CAS  Google Scholar 

  66. Kim J, Kim DI, Lee SK, Kim DJ, Lee JE, Ahn SK (2008) Imaging of the inflammatory response in reperfusion injury after transient cerebral ischemia in rats: correlation of superparamagnetic iron oxide-enhanced magnetic resonance imaging with histopathology. Acta Radiol 49(5):580–588

    Article  PubMed  CAS  Google Scholar 

  67. Schmitz SA, Coupland SE, Gust R, Winterhalter S, Wagner S, Kresse M et al (2000) Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits. Invest Radiol 35(8):460–471

    Article  PubMed  CAS  Google Scholar 

  68. Klug K, Gert G, Thomas K, Christan Z, Marco P, Elisabeth B et al (2009) Murine atherosclerotic plaque imaging with the USPIO Ferumoxtran-10. Front Biosci 14:2546–2552

    Article  PubMed  CAS  Google Scholar 

  69. Bendszus M, Stoll G (2003) Caught in the act: in vivo mapping of macrophage infiltration in nerve injury by magnetic resonance imaging. J Neurosci 23(34):10892–10896

    PubMed  CAS  Google Scholar 

  70. Beckmann N, Falk R, Zurbrugg S, Dawson J, Engelhardt P (2003) Macrophage infiltration into the rat knee detected by MRI in a model of antigen-induced arthritis. Magn Reson Med 49(6):1047–1055

    Article  PubMed  Google Scholar 

  71. Beckmann N, Cannet C, Zurbruegg S, Haberthur R, Li J, Pally C et al (2006) Macrophage infiltration detected at MR imaging in rat kidney allografts: early marker of chronic rejection? Radiology 240(3):717–724

    Article  PubMed  Google Scholar 

  72. Ye Q, Wu YL, Foley LM, Hitchens TK, Eytan DF, Shirwan H et al (2008) Longitudinal tracking of recipient macrophages in a rat chronic cardiac allograft rejection model with noninvasive magnetic resonance imaging using micrometer-sized paramagnetic iron oxide particles. Circulation 118(2):149–156

    Article  PubMed  Google Scholar 

  73. Ho C, Hitchens TK (2004) A non-invasive approach to detecting organ rejection by MRI: monitoring the accumulation of immune cells at the transplanted organ. Curr Pharm Biotechnol 5(6):551–566

    Article  PubMed  CAS  Google Scholar 

  74. Dunn EA, Weaver LC, Dekaban GA, Foster PJ (2005) Cellular imaging of inflammation after experimental spinal cord injury. Mol Imaging 4(1):53–62

    PubMed  Google Scholar 

  75. Cromer Berman SM, Walczak P, Bulte JW (2011) Tracking stem cells using magnetic nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3(4):343–355

    Article  PubMed  Google Scholar 

  76. Tang KS, Shapiro EM (2011) Enhanced magnetic cell labeling efficiency using -NH(2) coated MPIOs. Magn Reson Med 65(6):1564–1569

    Article  PubMed  CAS  Google Scholar 

  77. Walczak P, Kedziorek DA, Gilad AA, Lin S, Bulte JW (2005) Instant MR labeling of stem cells using magnetoelectroporation. Magn Reson Med 54(4):769–774

    Article  PubMed  CAS  Google Scholar 

  78. Walczak P, Ruiz-Cabello J, Kedziorek DA, Gilad AA, Lin S, Barnett B et al (2006) Magnetoelectroporation: improved labeling of neural stem cells and leukocytes for cellular magnetic resonance imaging using a single FDA-approved agent. Nanomedicine 2(2):89–94

    Article  PubMed  CAS  Google Scholar 

  79. Tai JH, Foster P, Rosales A, Feng B, Hasilo C, Martinez V et al (2006) Imaging islets labeled with magnetic nanoparticles at 1.5 Tesla. Diabetes 55(11):2931–2938

    Article  PubMed  CAS  Google Scholar 

  80. Smith CA, de la Fuente J, Pelaz B, Furlani EP, Mullin M, Berry CC (2010) The effect of static magnetic fields and tat peptides on cellular and nuclear uptake of magnetic nanoparticles. Biomaterials 31(15):4392–4400

    Article  PubMed  CAS  Google Scholar 

  81. Baeten K, Adriaensens P, Hendriks J, Theunissen E, Gelan J, Hellings N et al (2010) Tracking of myelin-reactive T cells in experimental autoimmune encephalomyelitis (EAE) animals using small particles of iron oxide and MRI. NMR Biomed 23(6):601–609

    Article  PubMed  CAS  Google Scholar 

  82. Heyn C, Ronald JA, Mackenzie LT, MacDonald IC, Chambers AF, Rutt BK et al (2006) In vivo magnetic resonance imaging of single cells in mouse brain with optical validation. Magn Reson Med 55(1):23–29

    Article  PubMed  Google Scholar 

  83. Jirak D, Kriz J, Strzelecki M, Yang J, Hasilo C, White DJ et al (2009) Monitoring the survival of islet transplants by MRI using a novel technique for their automated detection and quantification. MAGMA 22(4):257–265

    Article  PubMed  CAS  Google Scholar 

  84. Sykova E, Jendelova P (2007) In vivo tracking of stem cells in brain and spinal cord injury. Prog Brain Res 161:367–383

    Article  PubMed  CAS  Google Scholar 

  85. Dunning MD, Lakatos A, Loizou L, Kettunen M, ffrench-Constant C, Brindle KM et al (2004) Superparamagnetic iron oxide-labeled Schwann cells and olfactory ensheathing cells can be traced in vivo by magnetic resonance imaging and retain functional properties after transplantation into the CNS. J Neurosci 24(44):9799–9810

    Article  PubMed  CAS  Google Scholar 

  86. Lee IH, Bulte JW, Schweinhardt P, Douglas T, Trifunovski A, Hofstetter C et al (2004) In vivo magnetic resonance tracking of olfactory ensheathing glia grafted into the rat spinal cord. Exp Neurol 187(2):509–516

    Article  PubMed  Google Scholar 

  87. Gonzalez-Lara LE, Xu X, Hofstetrova K, Pniak A, Chen Y, McFadden CD et al (2011) The use of cellular magnetic resonance imaging to track the fate of iron-labeled multipotent stromal cells after direct transplantation in a mouse model of spinal cord injury. Mol Imaging Biol 13(4):702–711

    Article  PubMed  Google Scholar 

  88. Pawelczyk E, Jordan EK, Balakumaran A, Chaudhry A, Gormley N, Smith M et al (2009) In vivo transfer of intracellular labels from locally implanted bone marrow stromal cells to resident tissue macrophages. PLoS One 4(8):e6712

    Article  PubMed  Google Scholar 

  89. Terrovitis J, Stuber M, Youssef A, Preece S, Leppo M, Kizana E et al (2008) Magnetic resonance imaging overestimates ferumoxide-labeled stem cell survival after transplantation in the heart. Circulation 117(12):1555–1562

    Article  PubMed  Google Scholar 

  90. Amsalem Y, Mardor Y, Feinberg MS, Landa N, Miller L, Daniels D et al (2007) Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. Circulation 116(11 Suppl):I38–I145

    PubMed  CAS  Google Scholar 

  91. Coyne TM, Marcus AJ, Woodbury D, Black IB (2006) Marrow stromal cells transplanted to the adult brain are rejected by an inflammatory response and transfer donor labels to host neurons and glia. Stem Cells 24(11):2483–2492

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula J. Foster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gonzalez-Lara, L.E., Jawan, F., Foster, P.J. (2013). Magnetic Resonance Imaging of Experimental Spinal Cord Injury. In: Aldskogius, H. (eds) Animal Models of Spinal Cord Repair. Neuromethods, vol 76. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-197-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-197-4_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-196-7

  • Online ISBN: 978-1-62703-197-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics