Skip to main content

Site-Specific Gene Integration in Rice

  • Protocol
  • First Online:
Rice Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 956))

Abstract

Site-specific gene integration is a powerful technique for ensuring stable transgene expression. Transgenic plants produced by conventional transformation techniques often display highly variable transgene expression, which is mostly attributed to integration patterns consisting of multiple copies of transgene constructs. Therefore, it is desirable to generate single-copy integrations, preferably in a characterized genomic position. Precise integration of foreign genes into a selected genomic position can be obtained by employing site-specific recombination systems derived from bacteria or yeast. P1 bacteriophage Cre-lox system has been particularly successful in directing precise integration of foreign genes into “previously engineered” genomic sites. The resulting transgenic plants display stable expression through successive generations. Therefore, site-specific integration approach is useful for streamlining production of transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breyne P, Gheysen G, Jacobs A, Van Montagu M, Depicker A (1992) Effect of T-DNA configuration on transgene expression. Mol Gen Genet 235:389–396

    Article  PubMed  CAS  Google Scholar 

  2. Iglesias VA, Moscone EA, Papp I, Neuhuber F, Michalowski S, Phelan T, Spiker S, Matzke M, Matzke AJ (1997) Molecular and cytogenetic analyses of stably and unstably expressed transgene loci in tobacco. Plant Cell 9:1251–1264

    PubMed  CAS  Google Scholar 

  3. Kumpatla SP, Hall TC (1998) Recurrent onset of epigenetic silencing in rice harboring a multi-copy transgene. Plant J 14:129–135

    Article  PubMed  CAS  Google Scholar 

  4. De Wilde C, Podevin N, Windels P, Depicker A (2001) Silencing of antibody genes in plants with single-copy transgene inserts as a result of gene dosage effects. Mol Genet Genomics 265:647–653

    Article  PubMed  Google Scholar 

  5. Elmayan T, Vaucheret H (1996) Expression of single copies of a strongly expressed 35S transgene can be silenced post-transcriptionally. Plant J 9:787–797

    Article  CAS  Google Scholar 

  6. Jorgensen R, Snyder C, Jones JDG (1987) T-DNA is organized predominantly in inverted repeat structures in plants transformed with Agrobacterium tumefaciens C58 derivatives. Mol Gen Genet 207:471–477

    Article  CAS  Google Scholar 

  7. Mayerhofer R, Koncz-Kalman Z, Nawrath C, Bakkeren G, Crameri A et al (1991) T-DNA integration: a mode of illegitimate recombination in plants. EMBO J 10:697–704

    PubMed  CAS  Google Scholar 

  8. Kohli A, Leech M, Vain P, Laurie DA, Christou P (1998) Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc Natl Acad Sci USA 95:7203–7208

    Article  PubMed  CAS  Google Scholar 

  9. Pawlowski WP, Somers DA (1998) Transgenic DNA integrated into the oat genome is frequently interspersed by host DNA. Proc Natl Acad Sci USA 95:12106–12110

    Article  PubMed  CAS  Google Scholar 

  10. Cheng ZQ, Huang XQ, Ray W (2001) Comparison of biolistic and Agrobacterium-mediated transformation methods on transgene copy number and rearrangement frequency in rice. Acta Botanica Sinica 43:826–833

    CAS  Google Scholar 

  11. Shrawat AK, Lörz H (2006) Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Plant Biotechnol J 4:575–603

    Article  PubMed  CAS  Google Scholar 

  12. Kononov ME, Bassuner B, Gelvin SB (1997) Integration of T-DNA binary vector ‘backbone’ sequences into the tobacco genome: evidence for multiple complex patterns of integration. Plant J 11:945–957

    Article  PubMed  CAS  Google Scholar 

  13. De Buck S, De Wilde C, Van Montagu M, Depicker A (2000) T-DNA vector backbone sequences are frequently integrated into the genome of transgenic plants obtained by Agrobacterium-mediated transformation. Mol Breed 6:459–468

    Article  Google Scholar 

  14. Ulker B, Li Y, Rosso MG, Logemann E, Somssich IE, Weisshaar B (2008) T-DNA-mediated transfer of Agrobacterium tumefaciens chromosomal DNA into plants. Nat Biotechnol 26:1015–1017

    Article  PubMed  Google Scholar 

  15. Wright DA, Townsend JA, Winfrey RJ Jr, Irwin PA, Rajagopal J, Lonosky PM, Hall BD, Jondle MD, Voytas DF (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44:693–705

    Article  PubMed  CAS  Google Scholar 

  16. Ow DW (2002) Recombinase-directed plant transformation for the post-genomic era. Plant Mol Biol 48:183–200

    Article  PubMed  CAS  Google Scholar 

  17. Srivastava V, Ariza-Nieto M, Wilson AJ (2004) Cre-mediated site-specific gene integration for consistent transgene expression in rice. Plant Biotechnol J 2:169–179

    Article  PubMed  CAS  Google Scholar 

  18. Srivastava V, Ow DW (2002) Biolistic-mediated site-specific integration in rice. Mol Breed 8:345–350

    Article  Google Scholar 

  19. Albert H, Dale EC, Lee E, Ow DW (1995) Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J 7:649–659

    Article  PubMed  CAS  Google Scholar 

  20. Vergunst AC, Jansen LE, Hooykaas PJJ (1998) Site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana mediated by Cre recombinase. Nucleic Acids Res 26:2729–2734

    Article  PubMed  CAS  Google Scholar 

  21. Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  PubMed  CAS  Google Scholar 

  22. Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812

    Article  PubMed  CAS  Google Scholar 

  23. Mei C, Zhou X, Yang Y (2007) Use of RNA interference to dissect defense-signaling pathways in rice. Methods Mol Biol 354:161–171

    PubMed  CAS  Google Scholar 

  24. Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689

    Article  PubMed  CAS  Google Scholar 

  25. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vibha Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Srivastava, V. (2013). Site-Specific Gene Integration in Rice. In: Yang, Y. (eds) Rice Protocols. Methods in Molecular Biology, vol 956. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-194-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-194-3_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-193-6

  • Online ISBN: 978-1-62703-194-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics