Skip to main content

Future Developments in Instrumentation for Electron Crystallography

  • Protocol
  • First Online:
Electron Crystallography of Soluble and Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 955))

  • 3091 Accesses

Abstract

Advances in instrumentation have proceeded at an impressive rate since the invention of the electron microscope. These advances have produced a continuous expansion of the capabilities and range of application of electron microscopy. In order to provide some insights on how continuing advances may enhance cryo-electron microscopy and electron crystallography, we review some of the active areas of instrumentation development. There is strong momentum in areas including detectors, phase contrast devices, and aberration correctors that may have substantial impact on the productivity and expectations of electron crystallographers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams RC, Fisher HW (1970) Electron microscopy of tobacco mosaic virus under conditions of minimal beam exposure. J Mol Biol 52:121–123

    Article  PubMed  CAS  Google Scholar 

  2. Matricardi VR, Moretz RC, Parsons DF (1972) Electron diffraction of wet proteins: catalase. Science 177:268–270

    Article  PubMed  CAS  Google Scholar 

  3. Heide HG, Grund S (1974) Deep-freeze link for transport of water-containing biological objects to the electron microscope. J Ultrastruct Res 48:259–268

    Article  PubMed  CAS  Google Scholar 

  4. Taylor KA, Glaeser RM (1975) Modified airlock door for the introduction of frozen specimens into the JEM 100B electron microscope. Rev Sci Instrum 46:985–986

    Article  Google Scholar 

  5. Taylor KA, Glaeser RM (1974) Electron diffraction of frozen, hydrated protein crystals. Science 186:1036–1037

    Article  PubMed  CAS  Google Scholar 

  6. Adrian M, Dubochet J, Lepault J, McDowall AW (1984) Cryo-electron microscopy of viruses. Nature 308:32–36

    Article  PubMed  CAS  Google Scholar 

  7. Downing KH (1991) Spot-scan imaging in transmission electron microscopy. Science 251:53–59

    Article  PubMed  CAS  Google Scholar 

  8. Carragher B, Kisseberth N, Kriegman D, Milligan RA, Potter CS, Pulokas J, Reilein A (2000) Leginon: an automated system for acquisition of images from vitreous ice specimens. J Struct Biol 132:33–45

    Article  PubMed  CAS  Google Scholar 

  9. Nickell S, Forster F, Linaroudis A, Net WD, Beck F, Hegerl R, Baumeister W, Plitzko JM (2005) TOM software toolbox: acquisition and analysis for electron tomography. J Struct Biol 149:227–234

    Article  PubMed  Google Scholar 

  10. Mastronarde DN (2005) Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152:36–51

    Article  PubMed  Google Scholar 

  11. Sass S (1989) A patently false myth. Skeptical Inquirer 13:310–313

    Google Scholar 

  12. Boersch H (1947) Uber die kontraste von atomen im elektronenmikroskop. Z Naturforsch A – J Phys Sci 2:615–633

    Google Scholar 

  13. Danev R, Glaeser RM, Nagayama K (2009) Practical factors affecting the performance of a thin-film phase plate for transmission electron microscopy. Ultramicroscopy 109:312–325

    Article  PubMed  CAS  Google Scholar 

  14. Downing KH (1979) Possibilities of heavy atom discrimination using single-sideband techniques. Ultramicroscopy 4:13–31

    Article  CAS  Google Scholar 

  15. Unwin PNT (1972) Electron microscopy of biological specimens by means of an electrostatic phase plate. Poc Roy Phil Soc A Math Phys Sci 329:327–359

    Article  Google Scholar 

  16. Danev R, Nagayama K (2001) Transmission electron microscopy with Zernike phase plate. Ultramicroscopy 88:243–252

    Article  PubMed  CAS  Google Scholar 

  17. Danev R, Kanamaru S, Marko M, Nagayama K (2010) Zernike phase contrast cryo-electron tomography. J Struct Biol 171:174–181

    Article  PubMed  Google Scholar 

  18. Majorovits E, Barton B, Schultheiss K, Perez-Willard F, Gerthsen D, Schroder RR (2007) Optimizing phase contrast in transmission electron microscopy with an electrostatic (Boersch) phase plate. Ultramicroscopy 107:213–226

    Article  PubMed  CAS  Google Scholar 

  19. Alloyeau D, Hsieh WK, Anderson EH, Hilken L, Benner G, Meng X, Chen FR, Kisielowski C (2010) Imaging of soft and hard materials using a Boersch phase plate in a transmission electron microscope. Ultramicroscopy 110:563–570

    Article  CAS  Google Scholar 

  20. Cambie R, Downing KH, Typke D, Glaeser RM, Jin J (2007) Design of a microfabricated, two-electrode phase-contrast element suitable for electron microscopy. Ultramicroscopy 107:329–339

    Article  PubMed  CAS  Google Scholar 

  21. Danev R, Nagayama K (2004) Complex observation in electron microscopy: IV. Reconstruction of complex object wave from conventional and half plane phase plate image pair. J Phys Soc Jpn 73:2718–2724

    Article  CAS  Google Scholar 

  22. Schröder RR, Barton B, Rose H, Benner G (2007) Contrast enhancement by anamorphotic phase plates in an aberration corrected TEM. Microsc Microanal 13(suppl 3):136–137

    Google Scholar 

  23. Tonomura A, Osakabe N, Matsuda T, Kawasaki T, Endo J, Yano S, Yamada H (1986) Evidence for Aharonov-Bohm effect with magnetic-field completely shielded from electron wave. Phys Rev Lett 56:792–795

    Article  PubMed  Google Scholar 

  24. Nagayama K (2008) Development of phase plates for electron microscopes and their biological application. Eur Biophys J 37:345–358

    Article  PubMed  Google Scholar 

  25. Muller H, Jin JA, Danev R, Spence J, Padmore H, Glaeser RM (2010) Design of an electron microscope phase plate using a focused continuous-wave laser. New J Phys 12

    Google Scholar 

  26. Tietz H (2008) Design and characterization of 64 megapixel fiber optic coupled CMOS detector for transmission electron microscopy. Microsc Microanal 14(suppl S2): 804–805

    Google Scholar 

  27. Roberts PTE, Chapman JN, Macleod AM (1982) A CCD-based image recording-system for the CTEM. Ultramicroscopy 8:385–396

    Article  CAS  Google Scholar 

  28. McMullan G, Chen S, Henderson R, Faruqi AR (2009) Detective quantum efficiency of electron area detectors in electron microscopy. Ultramicroscopy 109:1126–1143

    Article  PubMed  CAS  Google Scholar 

  29. Battaglia M, Contarato D, Denes P, Doering D, Giubilato P, Kim TS, Mattiazzo S, Radmilovic V, Zalusky S (2009) A rad-hard CMOS active pixel sensor for electron microscopy. Nucl Instrum Methods Phys Res A 598:642–649

    Article  CAS  Google Scholar 

  30. McMullan G, Faruqi AR, Henderson R, Guerrini N, Turchetta R, Jacobs A, van Hoften G (2009) Experimental observation of the improvement in MTF from backthinning a CMOS direct electron detector. Ultramicroscopy 109:1144–1147

    Article  PubMed  CAS  Google Scholar 

  31. McMullan G, Clark AT, Turchetta R, Faruqi AR (2009) Enhanced imaging in low dose electron microscopy using electron counting. Ultramicroscopy 109:1411–1416

    Article  PubMed  CAS  Google Scholar 

  32. Battaglia M, Contarato D, Denes P, Giubilato P (2009) Cluster imaging with a direct detection CMOS pixel sensor in Transmission Electron Microscopy. Nucl Instrum Methods Phys Res A 608:363–365

    Article  CAS  Google Scholar 

  33. Fan GY, Datte P, Beuville E, Beche JF, Millaud J, Downing KH, Burkard FT, Ellisman MH, Xuong NH (1998) ASIC-based event-driven 2D digital electron counter for TEM imaging. Ultramicroscopy 70:107–113

    Article  PubMed  CAS  Google Scholar 

  34. Scherzer O (1949) The theoretical resolution limit of the electron microscope. J Appl Phys 20:20–29

    Article  CAS  Google Scholar 

  35. Rose HH (2009) Historical aspects of aberration correction. J Electron Microsc 58:77–85

    Article  Google Scholar 

  36. Frank J (1973) The envelope of electron microscopic transfer functions for partially coherent illumination. Optik 38:519–536

    Google Scholar 

  37. Glaeser R, Downing K, DeRosier D, Chiu W, Frank J (2007) Electron microscopy of biological macromolecules. Oxford, New York

    Google Scholar 

  38. Berriman J, Unwin N (1994) Analysis of transient structures by cryomicroscopy combined with rapid mixing of spray droplets. Ultramicroscopy 56:241–252

    Article  PubMed  CAS  Google Scholar 

  39. Lu ZH, Shaikh TR, Barnard D, Meng X, Mohamed H, Yassin A, Mannella CA, Agrawal RK, Lu TM, Wagenknecht T (2009) Monolithic microfluidic mixing-spraying devices for time-resolved cryo-electron microscopy. J Struct Biol 168:388–395

    Article  PubMed  Google Scholar 

  40. Shaikh TR, Barnard D, Meng X, Wagenknecht T (2009) Implementation of a flash-photolysis system for time-resolved cryo-electron microscopy. J Struct Biol 165:184–189

    Article  PubMed  CAS  Google Scholar 

  41. Fischer N, Konevega AL, Wintermeyer W, Rodnina MV, Stark H (2010) Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature 466:329–333

    Article  PubMed  CAS  Google Scholar 

  42. Reed BW, Armstrong MR, Browning ND, Campbell GH, Evans JE, LaGrange T, Masiel DJ (2009) The evolution of ultrafast electron microscope instrumentation. Microsc Microanal 15:272–281

    Article  PubMed  CAS  Google Scholar 

  43. Miller RJD, Ernstorfer R, Harb M, Gao M, Hebeisen CT, Jean-Ruel H, Lu C, Moriena G, Sciaini G (2010) ‘Making the molecular movie’: first frames. Acta Cryst A 66:137–156

    Article  Google Scholar 

  44. Zewail AH (2010) Four-dimensional electron microscopy. Science 328:187–193

    Article  PubMed  CAS  Google Scholar 

  45. Vonck J, Han BG, Burkard F, Perkins GA, Glaeser RM (1994) Two progressive substates of the M-inermediate can be identified in glucose-embedded, wild-type bacteriorhodopsin. Biophys J 67:1173–1178

    Article  PubMed  CAS  Google Scholar 

  46. Subramaniam S, Lindahl I, Bullough P, Faruqi AR, Tittor J, Oesterhelt D, Brown L, Lanyi J, Henderson R (1999) Protein conformational changes in the bacteriorhodopsin photocycle. J Mol Biol 287:145–161

    Article  PubMed  CAS  Google Scholar 

  47. Hahn M, Seredynski J, Baumeister W (1976) Inactivation of catalase monolayers by irradiation with 100 keV electrons. Proc Natl Acad Sci USA 73:823–827

    Article  PubMed  CAS  Google Scholar 

  48. Neutze R, Wouts R, van der Spoel D, Weckert E, Hajdu J (2000) Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406:752–757

    Article  PubMed  CAS  Google Scholar 

  49. Daberkow I, Herrmann KH, Lenz F (1993) A configurable angle-resolving detector system in STEM. Ultramicroscopy 50:75–82

    Article  Google Scholar 

  50. Caswell TA, Ercius P, Tate MW, Ercan A, Gruner SM, Muller DA (2009) A high-speed area detector for novel imaging techniques in a scanning transmission electron microscope. Ultramicroscopy 109:304–311

    Article  PubMed  CAS  Google Scholar 

  51. Vink M, Derr K, Love J, Stokes DL, Ubarretxena-Belandia T (2007) A high-throughput strategy to screen 2D crystallization trials of membrane proteins. J Struct Biol 160:295–304

    Article  PubMed  CAS  Google Scholar 

  52. Lefman J, Morrison R, Subramaniam S (2007) Automated 100-position specimen loader and image acquisition system for transmission electron microscopy. J Struct Biol 158:318–326

    Article  PubMed  Google Scholar 

  53. Cheng A, Leung A, Fellmann D, Quispe J, Suloway C, Pulokas J, Abeyrathne PD, Lam JS, Carragher B, Potter CS (2007) Towards automated screening of two-dimensional crystals. J Struct Biol 160:324–331

    Article  PubMed  CAS  Google Scholar 

  54. van Dyck D, de Beeck MO, Coene W (1993) A new approach to object wave-function reconstruction in electron-microscopy. Optik 93:103–107

    Google Scholar 

  55. Gamm B, Dries M, Schultheiss K, Blank H, Rosenauer A, Schröder RR, Gerthsen D (2010) Object wave reconstruction by phase-plate transmission electron microscopy. Ultramicroscopy 110:807–814

    Article  PubMed  CAS  Google Scholar 

  56. Buijsse B, van Laarhoven FM, Schmid AK, Cambie R, Cabrini S, Jin J, Glaeser RM (2011) Design of a hybrid double-sideband/single-sideband (schlieren) objective aperture suitable for electron microscopy. Ultramicroscopy 111:1688–1695

    Google Scholar 

  57. Koster AJ, Grimm R, Typke D, Hegerl R, Stoschek A, Walz J, Baumeister W (1997) Perspectives of molecular and cellular ­electron tomography. J Struct Biol 120:276–308

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth H. Downing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Downing, K.H. (2013). Future Developments in Instrumentation for Electron Crystallography. In: Schmidt-Krey, I., Cheng, Y. (eds) Electron Crystallography of Soluble and Membrane Proteins. Methods in Molecular Biology, vol 955. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-176-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-176-9_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-175-2

  • Online ISBN: 978-1-62703-176-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics