Skip to main content

Application of Reverse Microdialysis in Neuropharmacological Studies

  • Protocol
  • First Online:
Microdialysis Techniques in Neuroscience

Part of the book series: Neuromethods ((NM,volume 75))

Abstract

A recently developed application of microdialysis is the introduction of a substance into the extracellular space via the microdialysis probe. The inclusion of a higher amount of a drug in the perfusate allows the drug to diffuse through the microdialysis membrane to the tissue. This technique, reverse microdialysis, not only allows the local administration of a substance but also permits the simultaneous sampling of the extracellular levels of endogenous compounds. In neuropharmacological studies, reverse microdialysis has been extensively used for the study of the effects of diverse pharmacological and toxicological agents on neurotransmission at different central nuclei, such as antidepressants, antipsychotics, antiparkinsonians, hallucinogens, drugs of abuse, and experimental drugs. In addition, reverse microdialysis allows the simultaneous monitoring of effects of locally applied drugs on physiological parameters, including blood pressure, heart rate, thermoregulation, neuronal activity, and behavior of the experimental animal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Höcht C, Opezzo JA, Taira CA (2007) Applicability of reverse microdialysis in pharmacological and toxicological studies. J Pharmacol Toxicol Methods 55(1):3–15

    Article  PubMed  Google Scholar 

  2. Höcht C, Opezzo JA, Taira CA (2004) Microdialysis in drug discovery. Curr Drug Discov Technol 1(4):269–285

    Article  PubMed  Google Scholar 

  3. Höcht C, Opezzo JAW, Bramuglia GF, Taira CA (2006) Application of microdialysis for pharmacokinetic-pharmacodynamic (PK–PD) modelling. Exp Opin Drug Discov 1(4):289–301

    Article  Google Scholar 

  4. Galvan A, Smith Y, Wichmann T (2003) Continuous monitoring of intracerebral glutamate levels in awake monkeys using microdialysis and enzyme fluorometric detection. J Neurosci Methods 126(2):175–185

    Article  PubMed  CAS  Google Scholar 

  5. Chan SHH, Chan JYH (1999) Application of reverse microdialysis in the evaluation of neural regulation of cardiovascular functions. Anal Chim Acta 379(3):275–279

    Article  CAS  Google Scholar 

  6. Bazzett TJ, Becker JB, Albin RL (1991) A novel device for chronic intracranial drug delivery via microdialysis. J Neurosci Methods 40(1):1–8

    Article  PubMed  CAS  Google Scholar 

  7. Evans BK, Armstrong S, Singer G, Cook RD, Burnstock G (1975) Intracranial injection of drugs: comparison of diffusion of 6-OHDA and guanethidine. Pharmacol Biochem Behav 3(2):205–228

    Article  PubMed  CAS  Google Scholar 

  8. Rice ME, Gerhardt GA, Hierl PM, Nagy G, Adams RN (1985) Diffusion coefficients of neurotransmitters and their metabolites in brain extracellular fluid space. Neuroscience 15(3):891–902

    Article  PubMed  CAS  Google Scholar 

  9. Hargraves R, Freed WJ (1987) Chronic intrastriatal dopamine infusions in rats with unilateral lesions of the substantia nigra. Life Sci 40(10):959–966

    Article  PubMed  CAS  Google Scholar 

  10. Westerink BHC, Justice JB Jr (1991) Microdialysis compared with other in vivo release models. In: Robinson TE, Justice JB Jr (eds) Microdialysis in the neurosciences, techniques in the behavioral and neural sciences, vol 7. Elsevier, New York, pp 23–46

    Google Scholar 

  11. Fillenz M (2005) In vivo neurochemical monitoring and the study of behaviour. Neurosci Biobehav Rev 29(6):949–962

    Article  PubMed  CAS  Google Scholar 

  12. Marsala M, Malmberg AB, Yaksh TL (1995) The spinal loop dialysis catheter: characterization of use in the unanesthetized rat. J Neurosci Methods 62(1–2):43–53

    Article  PubMed  CAS  Google Scholar 

  13. Hutchinson PJ, O’Connell MT, Nortje J, Smith P, Al-Rawi PG, Gupta AK, Menon DK, Pickard JD (2005) Cerebral microdialysis methodology–evaluation of 20 kDa and 100 kDa catheters. Physiol Meas 26(4):423–428

    Article  PubMed  CAS  Google Scholar 

  14. Westerink BH, De Vries JB (2001) A method to evaluate the diffusion rate of drugs from a microdialysis probe through brain tissue. J Neurosci Methods 109(1):53–58

    Article  PubMed  CAS  Google Scholar 

  15. Ungerstedt U (1991) Introduction to intracerebral microdialysis. In: Robinson TE, Justice JB Jr (eds) Microdialysis in the neurosciences. Elsevier, Amsterdam, pp 3–22

    Google Scholar 

  16. Perry M, Li Q, Kennedy RT (2009) Review of recent advances in analytical techniques for the determination of neurotransmitters. Anal Chim Acta 653(1):1–22

    Article  PubMed  CAS  Google Scholar 

  17. Duva MA, Tomkins EM, Moranda LM, Kaplan R, Sukhaseum A, Jimenez A, Stanley BG (2001) Reverse microdialysis of N-methyl-D-aspartic acid into the lateral hypothalamus of rats: effects on feeding and other behaviors. Brain Res 921(1–2):122–132

    Article  PubMed  CAS  Google Scholar 

  18. Di Verniero CA, Bertera F, Buontempo F, Bernabeu E, Chiappetta D, Mayer MA, Bramuglia GF, Taira CA, Höcht C (2010) Enantioselective pharmacokinetic-pharmacodynamic modelling of carvedilol in a N-nitro-l-arginine methyl ester rat model of secondary hypertension. J Pharm Pharmacol 62(7):890–900

    PubMed  Google Scholar 

  19. Höcht C, Opezzo JA, Taira CA (2005) Hypothalamic antihypertensive effect of metoprolol in chronic aortic coarctated rats. Clin Exp Pharmacol Physiol 32(8):681–686

    Article  PubMed  Google Scholar 

  20. Guilloux JP, David DJ, Guiard BP, Chenu F, Repérant C, Toth M, Bourin M, Gardier AM (2006) Blockade of 5-HT1A receptors by (+/-)-pindolol potentiates cortical 5-HT outflow, but not antidepressant-like activity of paroxetine: microdialysis and behavioral approaches in 5-HT1A receptor knockout mice. Neuropsychopharmacology 31(10):2162–2172

    PubMed  CAS  Google Scholar 

  21. Engleman EA, McBride WJ, Wilber AA, Shaikh SR, Eha RD, Lumeng L, Li TK, Murphy JM (2000) Reverse microdialysis of a dopamine uptake inhibitor in the nucleus accumbens of alcohol-preferring rats: effects on dialysate dopamine levels and ethanol intake. Alcohol Clin Exp Res 24(6):795–801

    Article  PubMed  CAS  Google Scholar 

  22. West AR, Grace AA (2002) Opposite influences of endogenous dopamine D1 and D2 receptor activation on activity states and electrophysiological properties of striatal neurons: studies combining in vivo intracellular recordings and reverse microdialysis. J Neurosci 22(1):294–304

    PubMed  CAS  Google Scholar 

  23. McAdoo DJ, Wu P (2008) Microdialysis in central nervous system disorders and their treatment. Pharmacol Biochem Behav 90(2):282–296

    Article  PubMed  CAS  Google Scholar 

  24. Crochet S, Onoe H, Sakai K (2006) A potent non-monoaminergic paradoxical sleep inhibitory system: a reverse microdialysis and single-unit recording study. Eur J Neurosci 24(5):1404–1412

    Article  PubMed  Google Scholar 

  25. Ishiwata T, Saito T, Hasegawa H, Yazawa T, Otokawa M, Aihara Y (2006) Changes of body temperature and extracellular serotonin level in the preoptic area and anterior hypothalamus after thermal or serotonergic pharmacological stimulation of freely moving rats. Life Sci 75(22):2665–2675

    Article  Google Scholar 

  26. Hof PR, Young WG, Bloom FE, Belichenko PV, Celio MR (2000) Comparative cytoarchitectonic atlas of the C57BL/6 and 129/Sv mouse brains with CD ROM. Elsevier, San Diego, CA

    Google Scholar 

  27. Paxinos G, Watson CH (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic, New York

    Google Scholar 

  28. Claassen V (1994) Anaesthesia. In: Claaseen V (ed) Neglected factors in pharmacology and neuroscience research. Elsevier, Amsterdam, pp 382–421

    Google Scholar 

  29. Bourne JA (2003) Intracerebral microdialysis: 30 years as a tool for the neuroscientist. Clin Exp Pharmacol Physiol 30(1–2):16–24

    Article  PubMed  CAS  Google Scholar 

  30. Benveniste H, Hansen AJ (1991) Practical aspects of using microdialysis for determination of brain interstitial concentrations. In: Robinson TE, Justice JB Jr (eds) Microdialysis in the neurosciences. Elsevier, Amsterdam, pp 23–43

    Google Scholar 

  31. Souza Silva MA, Müller CP, Huston JP (2008) Microdialysis in the brain of anesthetized vs. freely moving animals. In: Westerink BHC, Cremers TIFH (eds) Handbook of Microdialysis. Elsevier, Amsterdam, pp 71–91

    Google Scholar 

  32. Zapata A, Chefer VI, Shippenberg TS (2009) Microdialysis in rodents. Curr Protoc Neurosci 7.2.1–7.2.29

    Google Scholar 

  33. Parsons LH, Justice JB Jr (1994) Quantitative approaches to in vivo brain microdialysis. Crit Rev Neurobiol 8(3):189–220

    PubMed  CAS  Google Scholar 

  34. Gaddum JH (1961) Push-pull cannulae. J Physiol 155:1P–2P

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Höcht .

Editor information

Editors and Affiliations

: List of Main Suppliers and Web Page Address

: List of Main Suppliers and Web Page Address

Supplier

Product

Web page address

CMA Microdialysis AB

Microdialysis probes, perfusion pumps

http//www.microdialysis.se

Skmedica

Perfusion pumps

http//www.Skmedica.com

Meql

Perfusion pumps

http//www.meql.com

David Kopf Instruments

Stereotaxic

http//www.kopfinstruments.com

Stoelting

Stereotaxic instrumentation

http//www.stoeltingco.com

Bioanalytical systems

Analytical equipment

http//www.basinc.com

Harvard apparatus

Microinfusion pump, microdialysis probes

http//www.harvardapparatus.com

Academic press

Brain atlas

http//www.elsevierdirect.com

Eppendorf

Tubes

http//www.eppendorf.com

Fluka

Analyte standards

http//www.sigmaaldrich.com

Hospal

Microdialysis fibers

http//www.hospal.it

Tocris bioscience

Artificial cerebrospinal fluid

http//www.tocris.com

Microbiotech

FEP tubing

http//www.microbiotech.se

Sorin biomedica

Microdialysis fibers

http//www.sorin.com

Spark Holland

Autosamplers

http//www.sparkholland.com

Univentor

Fraction collectors

http//www.univentor.com

Waters

Mass detectors

http//www.waters.com

Interlink scientific services

Mass detectors

http//www.iss-store.co.uk

Biosensors International

Biosensors

http//www.biosensors.com

Azosensors

Biosensors

http//www.azosensors.com

Invitrogen

Immunoassay equipment

http//www.invitrogen.com

Medcompare

Immunoassay equipment

http//www.medcompare.com

Konik

UV detectors

http//www.konik-group.com

Waters

UV detectors

http//www.waters.com

Shiseido

Electrochemical detectors

http//www.shiseido.co.jp

Bioanalytical systems

Electrochemical detectors

http//www.basinc.com

Thermo

Fluorescence detectors

http//www.thermoscientific.com

Shimadzu

Fluorescence detectors

http//www.shimadzu.com

Unimicro technologies

LIF detectors

http//www.unimicrotech.com

Picometrics

LIF detectors

http//www.picometrics.com

Microbore

Microbore LC

http//www.microbore.de

SGE

Capillary HPLC equipment

http//www.sge.com

Agilent technologies

Capillary HPLC equipment

http//www.chem.agilent.com

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Höcht, C., Bertera, F.M., Taira, C.A. (2013). Application of Reverse Microdialysis in Neuropharmacological Studies. In: Di Giovanni, G., Di Matteo, V. (eds) Microdialysis Techniques in Neuroscience. Neuromethods, vol 75. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-173-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-173-8_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-172-1

  • Online ISBN: 978-1-62703-173-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics